point vortices
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 44)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ken Sawada ◽  
Takashi Suzuki

We study a model describing relaxation dynamics of point vortices, from quasi-stationary state to the stationary state. It takes the form of a mean field equation of Brownian point vortices derived from Chavanis, and is formulated by our previous work as a limit equation of the patch model studied by Robert-Someria. This model is subject to the micro-canonical statistic laws; conservation of energy, that of mass, and increasing of the entropy. We study the existence and nonexistence of the global-in-time solution. It is known that this profile is controlled by a bound of the negative inverse temperature. Here we prove a rigorous result for radially symmetric case. Hence E/M2 large and small imply the global-in-time and blowup in finite time of the solution, respectively. Where E and M denote the total energy and the total mass, respectively.


2021 ◽  
Vol 26 (6) ◽  
pp. 675-691
Author(s):  
Sergey M. Ramodanov ◽  
Sergey V. Sokolov

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuma Hirakui ◽  
Takahiro Yajima

In this study, we geometrically analyze the relation between a point vortex system and deviation curvatures on the Jacobi field. First, eigenvalues of deviation curvatures are calculated from relative distances of point vortices in a three point vortex system. Afterward, based on the assumption of self-similarity, time evolutions of eigenvalues of deviation curvatures are shown. The self-similar motions of three point vortices are classified into two types, expansion and collapse, when the relative distances vary monotonously. Then, we find that the eigenvalues of self-similarity are proportional to the inverse fourth power of relative distances. The eigenvalues of the deviation curvatures monotonically convergent to zero for expansion, whereas they monotonically diverge for collapse, which indicates that the strengths of interactions between point vortices related to the time evolution of spatial geometric structure in terms of the deviation curvatures. In particular, for collapse, the collision point becomes a geometric singularity because the eigenvalues of the deviation curvature diverge. These results show that the self-similar motions of point vortices are classified by eigenvalues of the deviation curvature. Further, nonself-similar expansion is numerically analyzed. In this case, the eigenvalues of the deviation curvature are nonmonotonous but converge to zero, suggesting that the motion of the nonself-similar three point vortex system is also classified by eigenvalues of the deviation curvature.


2021 ◽  
Vol 925 ◽  
Author(s):  
Nick Pizzo ◽  
Rick Salmon

This paper explores an idealized model of the ocean surface in which widely separated surface-wave packets and point vortices interact in two horizontal dimensions. We start with a Lagrangian which, in its general form, depends on the fields of wave action, wave phase, stream function and two additional fields that label and track the vertical component of vorticity. By assuming that the wave action and vorticity are confined to infinitesimally small, widely separated regions of the flow, we obtain model equations that are analogous to, but significantly more general than, the familiar system consisting solely of point vortices. We analyse stable and unstable harmonic solutions, solutions in which wave packets eventually coincide with point vortices (violating our assumptions), and solutions in which the wave vector eventually blows up. Additionally, we show that a wave packet induces a net drift on a passive vortex in the direction of wave propagation which is equivalent to Darwin drift. Generalizing our analysis to many wave packets and vortices, we examine the influence of wave packets on an otherwise unstable vortex street and show analytically, according to linear stability analysis, that the wave-packet-induced drift can stabilize the vortex street. The system is then numerically integrated for long times and an example is shown in which the configuration remains stable, which may be particularly relevant for the upper ocean.


2021 ◽  
Vol 33 (8) ◽  
pp. 087119
Author(s):  
Ivan S. Mamaev ◽  
Ivan A. Bizyaev
Keyword(s):  

2021 ◽  
Vol 20 (1) ◽  
pp. 7-34
Author(s):  
Sveatoslav A. Moskalenko ◽  
◽  
Vsevolod A. Moskalenko ◽  
Igor V. Podlesny ◽  
Michael A. Liberman ◽  
...  

In the present work, the Chern–Simons (CS) gauge field theory developed by Jackiw and Pi [8] and widely used to interpret the fractional quantum Hall effects, is applied to describe a two-dimensional (2D) electron–hole (e–h) system in a strong perpendicular magnetic field and under the influence of quantum point vortices creating the CS gauge field. Composite particles formed by electrons and holes with equal integer positive numbers  of attached quantum point vortices are described by dressed field operators, which obey the Fermi or Bose statistics depending on even or odd numbers  . It is shown that the phase operators, as well as the vector and scalar potentials of the CS gauge field, depend on the difference between the electron and hole density operators. They vanish in the mean field approximation, when the average values of electron and hole densities coincide. Nevertheless, even in this case, the quantum fluctuations of the CS gauge field lead to new physics of the 2D e–h system.


Sign in / Sign up

Export Citation Format

Share Document