A Survey on Regularity Conditions for State-Constrained Optimal Control Problems and the Non-degenerate Maximum Principle

2019 ◽  
Vol 184 (3) ◽  
pp. 697-723 ◽  
Author(s):  
Aram Arutyunov ◽  
Dmitry Karamzin
2019 ◽  
Vol 25 ◽  
pp. 52 ◽  
Author(s):  
Benoît Bonnet

In this paper, we prove a Pontryagin Maximum Principle for constrained optimal control problems in the Wasserstein space of probability measures. The dynamics is described by a transport equation with non-local velocities which are affine in the control, and is subject to end-point and running state constraints. Building on our previous work, we combine the classical method of needle-variations from geometric control theory and the metric differential structure of the Wasserstein spaces to obtain a maximum principle formulated in the so-called Gamkrelidze form.


Author(s):  
K. L. Teo ◽  
K. H. Wong

AbstractIn a paper by Teo and Jennings, a constraint transcription is used together with the concept of control parametrisation to devise a computational algorithm for solving a class of optimal control problems involving terminal and continuous state constraints of inequality type. The aim of this paper is to extend the results to a more general class of constrained optimal control problems, where the problem is also subject to terminal equality state constraints. For illustration, a numerical example is included.


Sign in / Sign up

Export Citation Format

Share Document