pontryagin maximum principle
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 6 (12(62)) ◽  
pp. 51-55
Author(s):  
Cherif Abdelillah Otmane

We present a sample application covering several cases using an extension of the Pontryagin Minimum Principle (PMP) [3]. We are interested in the management of tumor angiogenesis, that is, the therapeutic management of the proliferation of cancer cells that develop new blood vessels. Let us formulate the problem and derive the optimal control and apply the Pontryagin maximum principle to our optimal trajectory, and we derive the theorem and check it with an example. Then we will study stabilization.





Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1883
Author(s):  
Faïçal Ndaïrou ◽  
Delfim F. M. Torres

We consider distributed-order non-local fractional optimal control problems with controls taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type. The possibility that admissible controls are subject to pointwise constraints is new and requires more sophisticated techniques to include a maximality condition. We start by proving results on continuity of solutions due to needle-like control perturbations. Then, we derive a differentiability result on the state solutions with respect to the perturbed trajectories. We end by stating and proving the Pontryagin maximum principle for distributed-order fractional optimal control problems, illustrating its applicability with an example.



Author(s):  
V.I. Sumin ◽  
M.I. Sumin

We consider the regularization of the classical optimality conditions (COCs) — the Lagrange principle and the Pontryagin maximum principle — in a convex optimal control problem with functional constraints of equality and inequality type. The system to be controlled is given by a general linear functional-operator equation of the second kind in the space $L^m_2$, the main operator of the right-hand side of the equation is assumed to be quasinilpotent. The objective functional of the problem is strongly convex. Obtaining regularized COCs in iterative form is based on the use of the iterative dual regularization method. The main purpose of the regularized Lagrange principle and the Pontryagin maximum principle obtained in the work in iterative form is stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs in iterative form are formulated as existence theorems in the original problem of minimizing approximate solutions. They “overcome” the ill-posedness properties of the COCs and are regularizing algorithms for solving optimization problems. As an illustrative example, we consider an optimal control problem associated with a hyperbolic system of first-order differential equations.



Author(s):  
Piernicola Bettiol ◽  
Loic Bourdin

In this paper we consider optimal sampled-data control problems on time scales with inequality state constraints. A Pontryagin maximum principle is established, extending to the state constrained case existing results in the time scale literature. The proof is based on the Ekeland variational principle and on the concept of implicit spike variations adapted to the time scale setting. The main result is then applied to continuous-time min-max optimal sampled-data control problems and a maximal velocity minimization problem for the harmonic oscillator with sampled-data control is numerically solved for illustration.



Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 802
Author(s):  
Andreea Bejenaru

This paper begins with a geometric statement of constraint optimization problems, which include both equality and inequality-type restrictions. The cost to optimize is a curvilinear functional defined by a given differential one-form, while the optimal state to be determined is a differential curve connecting two given points, among all the curves satisfying some given primal feasibility conditions. The resulting outcome is an invariant curvilinear Fritz–John maximum principle. Afterward, this result is approached by means of parametric equations. The classical single-time Pontryagin maximum principle for curvilinear cost functionals is revealed as a consequence.



Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 167
Author(s):  
Víctor Ayala ◽  
María Torreblanca ◽  
William Valdivia

Many significant real world challenges arise as optimization problems on different classes of control systems. In particular, ordinary differential equations with symmetries. The purpose of this review article is twofold. First, we give the information we have about the class of Linear Control Systems ΣG on a low dimension matrix Lie group G. Second, we invite the Mathematical community to consider possible applications through the Pontryagin Maximum Principle for ΣG. In addition, we challenge some theoretical open problems. The class ΣG is a perfect generalization of the classical Linear Control System on the Abelian group Rn. Let G be a Lie group of dimension two or three. Related to ΣG, this review describes the actual results about controllability, the time-optimal Hamiltonian equations and, the Pontryagin Maximum Principle. We show how to build ΣG, through several examples on low dimensional matrix groups.



Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 163
Author(s):  
Jiangjing Zhou ◽  
Anna Tur ◽  
Ovanes Petrosian ◽  
Hongwei Gao

We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first.



Author(s):  
Anant A. Joshi ◽  
Debasish Chatterjee ◽  
Ravi N. Banavar


Sign in / Sign up

Export Citation Format

Share Document