Fermat quartics with only trivial solutions in any odd degree number field

Author(s):  
Nguyen Xuan Tho
Keyword(s):  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephanie Chan ◽  
Christine McMeekin ◽  
Djordjo Milovic

AbstractLet K be a cyclic number field of odd degree over $${\mathbb {Q}}$$ Q with odd narrow class number, such that 2 is inert in $$K/{\mathbb {Q}}$$ K / Q . We define a family of number fields $$\{K(p)\}_p$$ { K ( p ) } p , depending on K and indexed by the rational primes p that split completely in $$K/{\mathbb {Q}}$$ K / Q , in which p is always ramified of degree 2. Conditional on a standard conjecture on short character sums, the density of such rational primes p that exhibit one of two possible ramified factorizations in $$K(p)/{\mathbb {Q}}$$ K ( p ) / Q is strictly between 0 and 1 and is given explicitly as a formula in terms of the degree of the extension $$K/{\mathbb {Q}}$$ K / Q . Our results are unconditional in the cubic case. Our proof relies on a detailed study of the joint distribution of spins of prime ideals.


2021 ◽  
Vol 118 (12) ◽  
pp. e2026449118
Author(s):  
Nuno Freitas ◽  
Alain Kraus ◽  
Samir Siksek

Let F be a totally real number field of odd degree. We prove several purely local criteria for the asymptotic Fermat’s Last Theorem to hold over F and also, for the nonexistence of solutions to the unit equation over F. For example, if two totally ramifies and three splits completely in F, then the asymptotic Fermat’s Last Theorem holds over F.


1985 ◽  
Vol 100 (3-4) ◽  
pp. 201-218 ◽  
Author(s):  
J. W. S. Cassels

SynopsisLet F(X, Y, Z) be a non-singular quadratic form with rational coefficients. The curve EF(x2, y2, z2) = 0 is of genus 3. A procedure is described for deciding whether there is an effective divisor on E of degree 3 defined over the rationals. There is such a divisor if and only if there is a point on E defined over some algebraic number field of odd degree. An example is constructed for which there is no such divisor although (i) there are points on E defined over all p-adic fields and over the reals and (ii) there are infinitely many rational points on each of the three curves F(X, y2, z2) = 0, F(x2, Y, z2) = 0 and F(x2, y2, Z) = 0.


1982 ◽  
Vol 2 (4) ◽  
pp. 375-388
Author(s):  
Jiwu Wang ◽  
Tai Kang
Keyword(s):  

Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 20 ◽  
Author(s):  
Donghoe Heo ◽  
Suhri Kim ◽  
Kisoon Yoon ◽  
Young-Ho Park ◽  
Seokhie Hong

The implementation of isogeny-based cryptography mainly use Montgomery curves, as they offer fast elliptic curve arithmetic and isogeny computation. However, although Montgomery curves have efficient 3- and 4-isogeny formula, it becomes inefficient when recovering the coefficient of the image curve for large degree isogenies. Because the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) requires odd-degree isogenies up to at least 587, this inefficiency is the main bottleneck of using a Montgomery curve for CSIDH. In this paper, we present a new optimization method for faster CSIDH protocols entirely on Montgomery curves. To this end, we present a new parameter for CSIDH, in which the three rational two-torsion points exist. By using the proposed parameters, the CSIDH moves around the surface. The curve coefficient of the image curve can be recovered by a two-torsion point. We also proved that the CSIDH while using the proposed parameter guarantees a free and transitive group action. Additionally, we present the implementation result using our method. We demonstrated that our method is 6.4% faster than the original CSIDH. Our works show that quite higher performance of CSIDH is achieved while only using Montgomery curves.


2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


Sign in / Sign up

Export Citation Format

Share Document