scholarly journals A Density of Ramified Primes

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephanie Chan ◽  
Christine McMeekin ◽  
Djordjo Milovic

AbstractLet K be a cyclic number field of odd degree over $${\mathbb {Q}}$$ Q with odd narrow class number, such that 2 is inert in $$K/{\mathbb {Q}}$$ K / Q . We define a family of number fields $$\{K(p)\}_p$$ { K ( p ) } p , depending on K and indexed by the rational primes p that split completely in $$K/{\mathbb {Q}}$$ K / Q , in which p is always ramified of degree 2. Conditional on a standard conjecture on short character sums, the density of such rational primes p that exhibit one of two possible ramified factorizations in $$K(p)/{\mathbb {Q}}$$ K ( p ) / Q is strictly between 0 and 1 and is given explicitly as a formula in terms of the degree of the extension $$K/{\mathbb {Q}}$$ K / Q . Our results are unconditional in the cubic case. Our proof relies on a detailed study of the joint distribution of spins of prime ideals.

2014 ◽  
Vol 10 (04) ◽  
pp. 885-903 ◽  
Author(s):  
Paul Pollack

Let 𝕏 be a finite group of primitive Dirichlet characters. Let ξ = ∑χ∈𝕏 aχ χ be a nonzero element of the group ring ℤ[𝕏]. We investigate the smallest prime q that is coprime to the conductor of each χ ∈ 𝕏 and that satisfies ∑χ∈𝕏 aχ χ(q) ≠ 0. Our main result is a nontrivial upper bound on q valid for certain special forms ξ. From this, we deduce upper bounds on the smallest unramified prime with a given splitting type in an abelian number field. For example, let K/ℚ be an abelian number field of degree n and conductor f. Let g be a proper divisor of n. If there is any unramified rational prime q that splits into g distinct prime ideals in ØK, then the least such q satisfies [Formula: see text].


Author(s):  
Peter Koymans ◽  
Carlo Pagano

Abstract In $1801$, Gauss found an explicit description, in the language of binary quadratic forms, for the $2$-torsion of the narrow class group and dual narrow class group of a quadratic number field. This is now known as Gauss’s genus theory. In this paper, we extend Gauss’s work to the setting of multi-quadratic number fields. To this end, we introduce and parametrize the categories of expansion groups and expansion Lie algebras, giving an explicit description for the universal objects of these categories. This description is inspired by the ideas of Smith [ 16] in his recent breakthrough on Goldfeld’s conjecture and the Cohen–Lenstra conjectures. Our main result shows that the maximal unramified multi-quadratic extension $L$ of a multi-quadratic number field $K$ can be reconstructed from the set of generalized governing expansions supported in the set of primes that ramify in $K$. This provides a recursive description for the group $\textrm{Gal}(L/\mathbb{Q})$ and a systematic procedure to construct the field $L$. A special case of our main result gives an upper bound for the size of $\textrm{Cl}^{+}(K)[2]$.


2018 ◽  
Vol 167 (5) ◽  
pp. 995-1047 ◽  
Author(s):  
Wei Ho ◽  
Arul Shankar ◽  
Ila Varma

2021 ◽  
Vol 71 (6) ◽  
pp. 1339-1360
Author(s):  
Kristýna Zemková

Abstract In this article, the standard correspondence between the ideal class group of a quadratic number field and the equivalence classes of binary quadratic forms of given discriminant is generalized to any base number field of narrow class number one. The article contains an explicit description of the correspondence. In the case of totally negative discriminants, equivalent conditions are given for a binary quadratic form to be totally positive definite.


1995 ◽  
Vol 138 ◽  
pp. 199-208 ◽  
Author(s):  
Stéphane Louboutin

Let M be any number field. We let DM, dM, hu, , AM and RegM be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of M, respectively.we set If q is any odd prime we let (⋅/q) denote the Legendre’s symbol.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Burns ◽  
Rob de Jeu ◽  
Herbert Gangl ◽  
Alexander D. Rahm ◽  
Dan Yasaki

Abstract We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$ -group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.


1991 ◽  
Vol 124 ◽  
pp. 133-144 ◽  
Author(s):  
Masanori Morishita

As an interpretation and a generalization of Gauss’ genus theory on binary quadratic forms in the language of arithmetic of algebraic tori, Ono [02] established an equality between a kind of “Euler number E(K/k)” for a finite Galois extension K/k of algebraic number fields and other arithmetical invariants associated to K/k. His proof depended on his Tamagawa number formula [01] and Shyr’s formula [Sh] which follows from the analytic class number formula of a torus. Later, two direct proofs were given by Katayama [K] and Sasaki [Sa].


2008 ◽  
Vol 17 (10) ◽  
pp. 1199-1221 ◽  
Author(s):  
TERUHISA KADOKAMI ◽  
YASUSHI MIZUSAWA

Based on the analogy between links and primes, we present an analogue of the Iwasawa's class number formula in a Zp-extension for the p-homology groups of pn-fold cyclic covers of a link in a rational homology 3-sphere. We also describe the associated Iwasawa invariants precisely for some examples and discuss analogies with the number field case.


Author(s):  
Mattias Jonsson ◽  
Paul Reschke

AbstractWe show that any birational selfmap of a complex projective surface that has dynamical degree greater than one and is defined over a number field automatically satisfies the Bedford–Diller energy condition after a suitable birational conjugacy. As a consequence, the complex dynamics of the map is well behaved. We also show that there is a well-defined canonical height function.


2018 ◽  
Vol 14 (09) ◽  
pp. 2333-2342 ◽  
Author(s):  
Henry H. Kim ◽  
Zack Wolske

In this paper, we consider number fields containing quadratic subfields with minimal index that is large relative to the discriminant of the number field. We give new upper bounds on the minimal index, and construct families with the largest possible minimal index.


Sign in / Sign up

Export Citation Format

Share Document