Arbitrary Amplitude Ion Acoustic Solitary Waves in An Unmagnetized Two Electron Population Ultra-Relativistic Dense Plasmas

2013 ◽  
Vol 110 (3-4) ◽  
pp. 165-174 ◽  
Author(s):  
Biswajit Sahu ◽  
Prasenjit Singha
2008 ◽  
Vol 15 (3) ◽  
pp. 033702 ◽  
Author(s):  
Mouloud Tribeche ◽  
Siham Ghebache ◽  
Kamel Aoutou ◽  
Taha Houssine Zerguini

2009 ◽  
Vol 16 (4) ◽  
pp. 042311 ◽  
Author(s):  
Prasanta Chatterjee ◽  
Kaushik Roy ◽  
Sithi V. Muniandy ◽  
S. L. Yap ◽  
C. S. Wong

2011 ◽  
Vol 78 (2) ◽  
pp. 133-141 ◽  
Author(s):  
A. RASHEED ◽  
N. L. TSINTSADZE ◽  
G. MURTAZA ◽  
R. CHAUDHARY

AbstractArbitrary amplitude and small amplitude ion-acoustic solitary waves (IASWs) have been investigated in a relativistic, collisionless, unmagnetized, and degenerate dense electron–positron–ion plasma. The arbitrary amplitude IASWs have been studied by using the Sagdeev-type pseudo-potential approach. Along with approximate solution, the exact amplitude solitary structure has also been studied numerically. The electrons and positrons are assumed to follow the corresponding Fermi distribution function and the ions are described by the hydrodynamic equations. A new dispersion relation for the ion-acoustic wave has been derived for the relativistic Thomas–Fermi plasma. An energy balance-like equation involving the Sagdeev-type pseudo-potential has been investigated and it has been shown that the concentration of plasma particles has significant effect on the permitted Mach number range of IASWs. Also, it has been pointed out that the only compressional supersonic IASWs can propagate in the relativistic Thomas–Fermi plasma. The present work would be helpful to understand the excitation of the nonlinear ion-acoustic waves in a degenerate plasma, such as in superdense white dwarfs and in the cores of massive planets.


2013 ◽  
Vol 79 (5) ◽  
pp. 613-621 ◽  
Author(s):  
S. K. EL-LABANY ◽  
R. SABRY ◽  
E. F. EL-SHAMY ◽  
D. M. KHEDR

AbstractInvestigation of arbitrary amplitude nonlinear ion-acoustic solitary waves which accompany collisionless positive–negative ion plasmas with high-energy electrons (represented by kappa distribution) is presented. Arbitrary amplitude solitary waves are investigated by deriving an energy-integral equation involving a Sagdeev-like pseudopotential. The existence regions of solitary pulses are, defined precisely, modified by the superthermality of energetic electrons. Furthermore, numerical calculations reveal that both compressive and rarefactive pulses may exist for negative ion mass groups in Titan's atmosphere. The superthermality of energetic electrons are found to modify the existence domains of large amplitude ion-acoustic waves in Titan's atmosphere. The dependence of solitary excitation characteristics on the superthermal parameter, the negative ion concentration, the positive-to-negative ions mass ratio, and the Mach number have been investigated. The present study might be helpful to understand the excitation of fully nonlinear ion-acoustic solitary pulses that may appear in the interplanetary medium and/or in the astrophysical plasmas in general.


Sign in / Sign up

Export Citation Format

Share Document