thomas fermi
Recently Published Documents


TOTAL DOCUMENTS

1342
(FIVE YEARS 69)

H-INDEX

60
(FIVE YEARS 4)

2021 ◽  
Vol 118 (50) ◽  
pp. e2108769118
Author(s):  
Laura Scalfi ◽  
Benjamin Rotenberg

We investigate the effect of the metallic character of solid substrates on solid–liquid interfacial thermodynamics using molecular simulations. Building on the recent development of a semiclassical Thomas–Fermi model to tune the metallicity in classical molecular dynamics simulations, we introduce a thermodynamic integration framework to compute the evolution of the interfacial free energy as a function of the Thomas–Fermi screening length. We validate this approach against analytical results for empty capacitors and by comparing the predictions in the presence of an electrolyte with values determined from the contact angle of droplets on the surface. The general expression derived in this work highlights the role of the charge distribution within the metal. We further propose a simple model to interpret the evolution of the interfacial free energy with voltage and Thomas–Fermi length, which allows us to identify the charge correlations within the metal as the microscopic origin of the evolution of the interfacial free energy with the metallic character of the substrate. This methodology opens the door to the molecular-scale study of the effect of the metallic character of the substrate on confinement-induced transitions in ionic systems, as reported in recent atomic force microscopy and surface force apparatus experiments.


Author(s):  
Ubiratãn José Furtado ◽  
Sidney dos Santos Avancini ◽  
José Ricardo Marinelli

Abstract Pairing effects in non-uniform nuclear matter, surrounded by electrons, are studied in the protoneutron star early stage and in other conditions. The so-called nuclear pasta phases at sub saturation densities are solved in a Wigner-Seitz cell, within the Thomas-Fermi approximation. The solution of this problem is important for the understanding of the physics of a newly born neutron star after a supernova explosion. It is shown that the pasta phase is more stable than uniform nuclear matter on some conditions and the pairing force relevance is studied in the determination of these stable phases.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 87
Author(s):  
Aleksey A. Mavrin ◽  
Alexander V. Demura

The approximate solution of the nonlinear Thomas–Fermi (TF) equation for ions is found by the Fermi method. The solution is based on the new asymptotic representation of the TF ion size valid for any ionization degree. The two universal functions and their derivatives, introduced by Fermi, are calculated by recent effective algorithms for the Emden–Fowler type equations with the accuracy sufficient for majority of applications. The comparison of our results with those obtained previously shows high accuracy and validity for arbitrary values of ionization degree. This study could potentially be of interest for the statistical TF method applications in physics and chemistry.


Author(s):  
Konstantin G. Zloshchastiev

We consider the dynamical properties of density fluctuations in the cigar-shaped Bose–Einstein condensate described by the logarithmic wave equation with a constant nonlinear coupling by using the Thomas–Fermi and linear approximations. It is shown that the propagation of small density fluctuations along the long axis of a condensed lump in a strongly anisotropic trap is essentially one-dimensional, while the trapping potential can be disregarded in the linear regime. Depending on the sign of nonlinear coupling, the fluctuations either take the form of translationally symmetric pulses and standing waves or become oscillations with varying amplitudes. We also study the condensate in an axial harmonic trap, by using elasticity theory’s notions. Linear particle density and energy also behave differently depending on the nonlinear coupling’s value. If it is negative, the density monotonously grows along with lump’s radius, while energy is a monotonous function of density. For the positive coupling, the density is bound from above, whereas energy grows monotonously as a function of density until it reaches its global maximum.


Sign in / Sign up

Export Citation Format

Share Document