negative ions
Recently Published Documents


TOTAL DOCUMENTS

2833
(FIVE YEARS 212)

H-INDEX

92
(FIVE YEARS 5)

Author(s):  
Tim Jacobus Adrianus Staps ◽  
Tim Jacobus Maria Donders ◽  
Bart Platier ◽  
J Beckers

Abstract Negative ions are an important constituent of the spatial afterglow of atmospheric pressure plasmas, where the fundamental plasma-substrate interactions take place that are vital for applications such as biomedicine, material synthesis, and ambient air treatment. In this work, we use laser-induced photodetachment to liberate electrons from negative ions in the afterglow region of an atmospheric pressure plasma jet interacting with an argon-oxygen mixture, and microwave cavity resonance spectroscopy (MCRS) to detect the photodetached electrons. This diagnostic technique allows for the determination of the electron density and the effective collision frequency before, during and after the laser pulse was shot through the measurement volume with nanosecond time resolution. From a laser saturation study, it is concluded that O− is the dominant negative ion in the afterglow. Moreover, the decay of the photodetached electron density is found to be dominantly driven by the (re)formation of O− by dissociative attachment of electrons with O2. As a consequence, we identified the species and process responsible for the formation of negative ions in the spatial afterglow in our experiment.


Author(s):  
Zutao Wang ◽  
Chuan Li ◽  
Menghan Xiao ◽  
Pengyu Wang ◽  
Ming Zhang ◽  
...  

Abstract The coalescence of droplets on the discharge electrode surface in high humidity environments has rarely been studied, which may affect discharge characteristics. Meanwhile, directional transport of droplets is of great significance for many applications ranging from fluidic processing to thermal management. Here, corona discharge in needle-plate electrode is adopted to explore the coalescence rule of droplets attached on the discharge electrode surface in high-humidity environment, and realize the counterflow of droplets. The experimental results show that the amount of coalesced droplets on the needle electrode surface reaches the maximum under -7.5 kV at relative humidity ~ 94% and ambient temperature ~ 20 ℃. When the applied voltage increases from -6 kV to -11 kV, the droplet moves up 2.76 mm in 5 s. The size of attached droplet depends on the balance of coalescence and evaporation. The coalescence is mainly attributed to the dielectrophoretic force caused by the high electric field gradient. The evaporation is related with the ionic wind generated by the corona discharge. As for the counterflow phenomenon of droplet, we speculate that the high concentration gradient of positive ions near the needle electrode provides a driving force for the negatively charged droplets. Meanwhile, the electrons and negative ions below the needle tip offer a repulsive force to the droplet. The shape and moving direction of the droplet attached on the needle surface can be manipulated by changing the voltage applied to the needle electrode, which shows the potential application value in realizing self-cleaning of electrode, liquid lens and so on.


The Present manuscript discusses on various scientific aspects of Indian Vedic Agnihotra Vijnan and Mantra therapy. It has been scientifically proven in many recent experiemnts and literature that Homa therapy is much effective in inviting rainy clouds, efficient in disesaes control through inhaling therapy, generates negative ions responsible for happiness, organic homa krishi (farming) is best for humans, boon for mental and physical fitness. The authors’ team have tried best to present a series of small experiemnts in support of few of above results and confident enough that gradually this therapy is poular and being accepted globally by one and all. Indian culture and science is scientific and full of components to uplift the human conciousness and ease in life. The present study supports this fact by visualizations and sensor based experiemnts. In 21st century, it is crucial to accept with open minded the good features of this alternate therapy in view of second and third and multiple waves of pandemic caused by sars-cov’19 and other global threats.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 15-38
Author(s):  
V.V. Strelko ◽  
◽  
Yu.I. Gorlov ◽  

In this paper, the nature of the chemical activity of pyrolyzed nanostructured carbon materials (PNCM), in particular active carbon (AC), in reactions of electron transfer considered from a single position, reflecting the priority role of paramagnetic centers and edge defunctionaled carbon atoms of carbon microcristallites (CMC) due to pyrolysis of precursors. Clusters in the form of polycyclic aromatic hydrocarbons with open (OES) and closed (CES) electronic shells containing terminal hydrogen atoms (or their vacancies) and different terminal functional groups depending on specific model reactions of radical recombination, combination, replacement and elimination were used to model of nanographenes (NG) and CM. Quantum-chemical calculations of molecular models of NG and CMC and heat effects of model reactions were performed in frames of the density functional theory (DFT) using extended valence-splitted basis 6-31G(d) with full geometry optimization of concrete molecules, ions, radicals and NG models. The energies of boundary orbitals were calculated by means of the restricted Hartry-Fock method for objects with closed (RHF) and open (ROHF) electronic shells. The total energies of small negative ions (HOO-, HO-) and anion-radical О2•‾) were given as the sum of calculated total energies of these compounds and their experimental electron affinities. The estimation of probability of considered chemical transformations was carried out on the base on the well-known Bell-Evans-Polyani principle about the inverse correlation of the thermal effects of reactions and its activation energies. It is shown that the energy gap ΔЕ (energy difference of boundary orbitals levels) in simulated nanographens should depend on a number of factors: the periphery structure of models, its size and shape, the number and nature of various structural defects, electronic states of NG. When considering possible chemical transformations on the AC surface, rectangular models of NG were used, for which the simple classification by type and number of edge structural elements of the carbon lattice was proposed. Quantum chemical calculations of molecular models of NG and CNC and the energy of model reactions in frames of DTF showed that the chemisorption of free radicals (3O2 and N•O), as recombination at free radical centers (FRC), should occur with significant heat effects. Such calculations give reason to believe that FRC play an important role in formation of the functional cover on the periphery of NG in CMC of studied materials. On the base of of cluster models of active carbon with OES new ideas about possible reactions mechanisms of radical-anion О2•‾ formation and decomposition of hydrogen peroxide on the surface of active carbon are offered. Explanation of increased activity of AC reduced by hydrogen in H2O2 decomposition is given. It is shown that these PNCM models, as first of all AC, allow to adequately describe their semiconductor nature and acid-base properties of such materials.


2021 ◽  
pp. 4674-4686
Author(s):  
Muayad Abdullah Ahmed

The charge species plays a vital role in changing the field in direct current discharge (DC). This article introduces a numerical modeling in one dimension of the inner electrode diameter of oxygen-fed negative corona discharge in coaxial electrodes geometry. The properties of negative corona plasma in a concentric cylindrical electrodes (wire-cylinder) were simulated by COMSOL Multiphysics software. Various diameters of negative corona electrode, namely 0.01, 0.025, 0.05, 0.075, and 0.125 mm, were applied, ​​where the diameter of the outer cylindrical electrode was taken as 15 mm. The model was run at atmospheric pressure and the applied negative voltage was -10 KV. Moreover, oxygen gas was used to fill the inter-electrodes distance. Furthermore, the spatial distribution of electrons, positive ions, and negative ions as a function of the diameter of negative electrode of the negative corona discharge were investigated. The study also tested the effects of the electrode diameter of the negative corona discharge on ozone generation. The observed decrease in ozone density with the increase in negative electrode diameter was reasonable and consistent with other results provided by researchers in this field.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shubhra Bhowmick ◽  
Nabakumar Ghosh ◽  
Biswajit Sahu

Abstract A theoretical investigation has been carried out to explore the modulational instability (MI) of electrostatic waves in a warm multi-ion dusty plasma system containing positive ions, negative ions and positively or negatively charged dust in presence of superthermal electrons. With the help of the standard perturbation technique, it is found that the dynamics of the modulated wave is governed by a damped nonlinear Schrödinger equation (NLSE). Regions of MI of the electrostatic wave are precisely determined and the analytical solutions predict the formation of dissipative bright and dark solitons as well as dissipative first- and second-order rogue wave solutions. It is found that the striking features (viz., instability criteria, amplitude and width of rogue waves, etc.) are significantly modified by the effects of relevant plasma parameters such as degree of the electron superthermality, dust density, etc. The time dependent numerical simulations of the damped NLSE reveal that modulated electrostatic waves exhibit breather like structures. Moreover, phase plane analysis has been performed to study the dynamical behaviors of NLSE by using the theory of dynamical system. It is remarked that outcome of present study may provide physical insight into understanding the generation of several types of nonlinear structures in dusty plasma environments, where superthermal electrons, positive and negative ions are accountable (e.g. Saturn’s magnetosphere, auroral zone, etc.).


Author(s):  
Mengjie Duan ◽  
Lijuan Wang ◽  
Xingyan Meng ◽  
Linzhi Fu ◽  
Yi Wang ◽  
...  

Indoor air quality is an important health factor as we spend more than 80% of our time indoors. The primary type of indoor pollutant is particulate matter, high levels of which increase respiratory disease risk. Therefore, air purifiers are a common choice for addressing indoor air pollution. Compared with traditional filtration purifiers, negative ion air purifiers (NIAPs) have gained popularity due to their energy efficiency and lack of noise. Although some studies have shown that negative ions may offset the cardiorespiratory benefits of air purifiers, the underlying mechanism is still unclear. In this study, we conducted a full-scale experiment using an in vitro airway model connected to a breathing simulator to mimic inhalation. The model was constructed using computed tomography scans of human airways and 3D-printing technology. We then quantified the effects of NIAPs on the administered dose of 0.5–2.5 μm particles in the small airway. Compared with the filtration purifier, the NIAP had a better dilution effect after a 1-h exposure and the cumulative administered dose to the small airway was reduced by 20%. In addition, increasing the negative ion concentration helped reduce the small airway exposure risk. NIAPs were found to be an energy-efficient air purification intervention that can effectively reduce the small airway particle exposure when a sufficient negative ion concentration is maintained.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuefen Kan ◽  
Ke Chen ◽  
Cheng Yin ◽  
Yu Yang ◽  
Minglei Shan ◽  
...  

Planar fractal microstructure is observed on the silver film treated by positive corona discharge for the first time. Due to the abundant positive ions driven by the electrical field of positive polarity, surface modification is mainly induced by the plasma oxidation effect, resulting in a large scale of dendritic pattern with self-similarity and hierarchy. In contrast, negative ions dominate the plasma-film interaction under negative corona discharge condition, leading to a different surface morphology without fractal characteristics. A growth model based on the modified diffusion-limited aggregation (DLA) theory is proposed to describe the formation of the dendritic fractal structure, whilst the physics behind is attributed to the electric field directed diffusion of the positive ions around the surface roughness. Numerical simulation verifies the high density of the hot spot in the dendritic pattern, which may enable potential applications in fractal photonic metamaterials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3408
Author(s):  
Xue Shi ◽  
Sumin Li ◽  
Bao Zhang ◽  
Jiao Wang ◽  
Xiaochen Xiang ◽  
...  

Oxidation reactions play a critical role in processes involving energy utilization, chemical conversion, and pollutant elimination. However, due to its spin-forbidden nature, the reaction of molecular dioxygen (O2) with a substrate is difficult under mild conditions. Herein, we describe a system that activates O2 via the direct modulation of its spin state by mechanical energy-induced triboelectric corona plasma, enabling the CO oxidation reaction under normal temperature and pressure. Under optimized reaction conditions, the activity was 7.2 μmol h−1, and the energy consumption per mole CO was 4.2 MJ. The results of kinetic isotope effect, colorimetry, and density functional theory calculation studies demonstrated that electrons generated in the triboelectric plasma were directly injected into the antibonding orbital of O2 to form highly reactive negative ions O2−, which effectively promoted the rate-limiting step of O2 dissociation. The barrier of the reaction of O2− ions and CO molecular was 3.4 eV lower than that of O2 and CO molecular. This work provides an effective strategy for using renewable and green mechanical energy to realize spin-forbidden reactions of small molecules.


Author(s):  
Feng Liu ◽  
Yue Zhuang ◽  
Yulei Zhao ◽  
Jie Chen ◽  
Zhi Fang

Abstract Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge in atmospheric pressure and high plasma-chemical reactivity. To further improve the plasma treatment efficiency and activity, a small amount of admixture can be introduced into working gases (usually Ar, He, N2), while it can affect plasma uniformity significantly. In this paper, oxygen is added into Ar nanosecond (ns) pulsed and AC DBDs DBD and the effect of the added oxygen on the uniformity and reactivity have been investigated with optical and electrical methods. The plasma uniformity is quantitatively analyzed by Gray Value Standard Deviation (GVSD) of discharge images. The optical emission spectroscopy (OES) measurement of the emission lines with different energy thresholds can reveal the tendency of T e under different operation conditions. The n e are estimated from the electrical analysis. It is found that the ns pulsed DBD shows a much better uniformity than AC DBD. With the addition of O2, the uniformity of ns-pulsed Ar DBD gets worse for the O2- negative ions by the attachment of electron on O2 distorts the space electric field and promotes the filamentary formation. While, in AC Ar DBD, the added O2 can reduce the n e and brightness of filaments, which enhances the plasma uniformity. Overdose O2 molecules cause drops of n e and T e to plasma extinction. The results can help to realize the establishment of the reactive and uniform atmospheric low temperature plasma sources.


Sign in / Sign up

Export Citation Format

Share Document