The generalized Kudryashov method for nonlinear space–time fractional partial differential equations of Burgers type

2018 ◽  
Vol 95 (1) ◽  
pp. 361-368 ◽  
Author(s):  
A. A. Gaber ◽  
A. F. Aljohani ◽  
A. Ebaid ◽  
J. Tenreiro Machado
2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 771
Author(s):  
Yusuf Gurefe

In this article, we consider the exact solutions of the Hunter-Saxton and Schrödinger equations defined by Atangana's comformable derivative using the general Kudryashov method. Firstly, Atangana's comformable fractional derivative and its properties are included. Then, by introducing the generalized Kudryashov method, exact solutions of nonlinear fractional partial differential equations (FPDEs), which can be expressed with the comformable derivative of Atangana, are classified. Looking at the results obtained, it is understood that the generalized Kudryashov method can yield important results in obtaining the exact solutions of FPDEs containing beta-derivatives.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the improved fractional subequation method is applied to establish the exact solutions for some nonlinear fractional partial differential equations. Solutions to the generalized time fractional biological population model, the generalized time fractional compound KdV-Burgers equation, the space-time fractional regularized long-wave equation, and the (3+1)-space-time fractional Zakharov-Kuznetsov equation are obtained, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fanwei Meng ◽  
Qinghua Feng

A new fractional subequation method is proposed for finding exact solutions for fractional partial differential equations (FPDEs). The fractional derivative is defined in the sense of modified Riemann-Liouville derivative. As applications, abundant exact solutions including solitary wave solutions as well as periodic wave solutions for the space-time fractional generalized Hirota-Satsuma coupled KdV equations are obtained by using this method.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng

We apply the method to seek exact solutions for several fractional partial differential equations including the space-time fractional (2 + 1)-dimensional dispersive long wave equations, the (2 + 1)-dimensional space-time fractional Nizhnik-Novikov-Veselov system, and the time fractional fifth-order Sawada-Kotera equation. The fractional derivative is defined in the sense of modified Riemann-liouville derivative. Based on a certain variable transformation, these fractional partial differential equations are transformed into ordinary differential equations of integer order. With the aid of mathematical software, a variety of exact solutions for them are obtained.


Sign in / Sign up

Export Citation Format

Share Document