Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method

Optik ◽  
2016 ◽  
Vol 127 (19) ◽  
pp. 7450-7458 ◽  
Author(s):  
Qinghua Feng ◽  
Fanwei Meng
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Based on a nonlinear fractional complex transformation, the Jacobi elliptic equation method is extended to seek exact solutions for fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. For demonstrating the validity of this method, we apply it to solve the space fractional coupled Konopelchenko-Dubrovsky (KD) equations and the space-time fractional Fokas equation. As a result, some exact solutions for them including the hyperbolic function solutions, trigonometric function solutions, rational function solutions, and Jacobi elliptic function solutions are successfully found.


2015 ◽  
Vol 19 (4) ◽  
pp. 1239-1244 ◽  
Author(s):  
Hong-Cai Ma ◽  
Dan-Dan Yao ◽  
Xiao-Fang Peng

This paper studies the space-time fractional Whitham-Broer-Kaup equations by the existed fractional sub-equation method, and exact solutions are obtained.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Ji Juan-Juan ◽  
Guo Ye-Cai ◽  
Zhang Lan-Fang ◽  
Zhang Chao-Long

A table lookup method for solving nonlinear fractional partial differential equations (fPDEs) is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1)-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 59-69
Author(s):  
Jamshad Ahmad ◽  
Syed Tauseef Mohyud-Din

In this paper, we applied relatively new fractional complex transform (FCT) to convert the given fractional partial differential equations (FPDEs) into corresponding partial differential equations (PDEs) and Variational Iteration Method (VIM) is to find approximate solution of time- fractional Fornberg-Whitham and time-fractional Wu-Zhang equations. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs arising in mathematical physics and hence can be extended to other problems of diversified nonlinear nature. Numerical results coupled with graphical representations explicitly reveal the complete reliability and efficiency of the proposed algorithm.  DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11687BIBECHANA 12 (2015) 59-69 


Sign in / Sign up

Export Citation Format

Share Document