liouville derivative
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 56)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 40 ◽  
pp. 1-16
Author(s):  
Adem Kilicman ◽  
Wedad Saleh

In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivative is  employed for constructing some results related to Mittag-Leffler functions and established a number of important relationships between the Mittag-Leffler functions and Wright function.


2022 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Ravshan Ashurov ◽  
Yusuf Fayziev

The nonlocal boundary value problem, dtρu(t)+Au(t)=f(t) (0<ρ<1, 0<t≤T), u(ξ)=αu(0)+φ (α is a constant and 0<ξ≤T), in an arbitrary separable Hilbert space H with the strongly positive selfadjoint operator A, is considered. The operator dt on the left hand side of the equation expresses either the Caputo derivative or the Riemann–Liouville derivative; naturally, in the case of the Riemann–Liouville derivatives, the nonlocal boundary condition should be slightly changed. Existence and uniqueness theorems for solutions of the problems under consideration are proved. The influence of the constant α on the existence of a solution to problems is investigated. Inequalities of coercivity type are obtained and it is shown that these inequalities differ depending on the considered type of fractional derivatives. The inverse problems of determining the right-hand side of the equation and the function φ in the boundary conditions are investigated.


Author(s):  
Rajagopalan Ramaswamy ◽  
Mohamed S. Abdel Latif ◽  
Amr Elsonbaty ◽  
Abas H. Abdel Kader

Abstract The aim of this work is to modify the invariant subspace method (ISM) in order to obtain closed form solutions of fractional differential-difference equations with Ψ-Riemann–Liouville (Ψ-RL) fractional derivative for first time. We have investigated the cases of two-dimensional and the three-dimensional invariant subspaces (ISs) in the suggested scheme. Using the modified ISM, new exact generalized solutions for the general fractional mKdV Lattice equation and the fractional Volterra lattice system are obtained. Compared with similar solution techniques in literature, the presented solution scheme is highly efficient and is capable to find new general exact solutions which cannot be attained by other methods.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3253
Author(s):  
Abdulmohsen D. Alruwaili ◽  
Aly R. Seadawy ◽  
Asghar Ali ◽  
Sid Ahmed O. Beinane

The aim of this work is to build novel analytical wave solutions of the nonlinear space-time fractional (2+1)-dimensional breaking soliton equations, with regards to the modified Riemann–Liouville derivative, by employing mathematical schemes, namely, the improved simple equation and modified F-expansion methods. We used the fractional complex transformation of the concern fractional differential equation to convert it for the solvable integer order differential equation. After the successful implementation of the presented methods, a comprehensive class of novel and broad-ranging exact and solitary travelling wave solutions were discovered, in terms of trigonometric, rational and hyperbolic functions. Hence, the present methods are reliable and efficient for solving nonlinear fractional problems in mathematics physics.


Author(s):  
Changpin Li ◽  
Zhiqiang Li

Abstract In this article, we focus on stability and ψ-algebraic decay (algebraic decay in the sense of ψ-function) of the equilibrium to the nonlinear ψ-fractional ordinary differential system. Before studying the nonlinear case, we show the stability and decay for linear system in more detail. Then we establish the linearization theorem for the nonlinear system near the equilibrium and further determine the stability and decay rate of the equilibrium. Such discussions include two cases, one with ψ-Caputo fractional derivative, another with ψ-Riemann–Liouville derivative, where the latter is a bit more complex than the former. Besides, the integral transforms are also provided for future studies.


Author(s):  
Ravshan Ashurov ◽  
Yusuf Fayziev

The nonlocal boundary value problem, dt&rho;u(t)+Au(t)=f(t) (0&amp;lt;&rho;&amp;lt;1, 0&amp;lt;t&le;T), u(&xi;)=&alpha;u(0)+&phi; (&alpha; is a constant and 0&amp;lt;&xi;&le;T), in an arbitrary separable Hilbert space H with the strongly positive selfadjoint operator A, is considered. The operator dt on the left hand side of the equation expresses either the Caputo derivative or the Riemann-Liouville derivative; naturally, in the case of the Riemann - Liouville derivatives, the nonlocal boundary condition should be slightly changed. Existence and uniqueness theorems for solutions of the problems under consideration are proved. The influence of the constant &alpha; on the existence of a solution to problems is investigated. Inequalities of coercivity type are obtained and it is shown that these inequalities differ depending on the considered type of fractional derivatives. The inverse problems of determining the right-hand side of the equation and the function &phi; in the boundary conditions are investigated.


2021 ◽  
Vol 5 (4) ◽  
pp. 221
Author(s):  
Daniel Han ◽  
Dmitri V. Alexandrov ◽  
Anna Gavrilova ◽  
Sergei Fedotov

We introduce a persistent random walk model for the stochastic transport of particles involving self-reinforcement and a rest state with Mittag–Leffler distributed residence times. The model involves a system of hyperbolic partial differential equations with a non-local switching term described by the Riemann–Liouville derivative. From Monte Carlo simulations, we found that this model generates superdiffusion at intermediate times but reverts to subdiffusion in the long time asymptotic limit. To confirm this result, we derived the equation for the second moment and find that it is subdiffusive in the long time limit. Analyses of two simpler models are also included, which demonstrate the dominance of the Mittag–Leffler rest state leading to subdiffusion. The observation that transient superdiffusion occurs in an eventually subdiffusive system is a useful feature for applications in stochastic biological transport.


2021 ◽  
Vol 5 (4) ◽  
pp. 217
Author(s):  
Noura Laksaci ◽  
Ahmed Boudaoui ◽  
Kamaleldin Abodayeh ◽  
Wasfi Shatanawi ◽  
Taqi A. M. Shatnawi

This paper is devoted to studying the existence and uniqueness of a system of coupled fractional differential equations involving a Riemann–Liouville derivative in the Cartesian product of fractional Sobolev spaces E=Wa+γ1,1(a,b)×Wa+γ2,1(a,b). Our strategy is to endow the space E with a vector-valued norm and apply the Perov fixed point theorem. An example is given to show the usefulness of our main results.


Author(s):  
Ubong D. Akpan

In this work, the effect of perturbation on linear fractional differential system is studied. The analysis is done using Riemann-Liouville derivative and the conclusion extended to using Caputo derivative since the result is similar. Conditions for determining the stability and asymptotic stability of perturbed linear fractional differential system are given.


Sign in / Sign up

Export Citation Format

Share Document