Generalized Hopf bifurcation of a non-smooth railway wheelset system

2020 ◽  
Vol 100 (4) ◽  
pp. 3277-3293
Author(s):  
Pengcheng Miao ◽  
Denghui Li ◽  
Hebai Chen ◽  
Yuan Yue ◽  
Jianhua Xie
2011 ◽  
Vol 26 (4) ◽  
pp. 433-445 ◽  
Author(s):  
Song-Mei Huan ◽  
Xiao-Song Yang

1979 ◽  
Vol 1 (4) ◽  
pp. 498-513 ◽  
Author(s):  
H. Kielhöfer ◽  
K. Kirchgässner

1994 ◽  
Vol 45 (2) ◽  
pp. 312-335 ◽  
Author(s):  
N. Sri Namachchivaya ◽  
Monica M. Doyle ◽  
William F. Langford ◽  
Nolan W. Evans

2019 ◽  
Vol 29 (03) ◽  
pp. 1950038 ◽  
Author(s):  
Yonghui Xia ◽  
Mateja Grašič ◽  
Wentao Huang ◽  
Valery G. Romanovski

We propose an approach to study small limit cycle bifurcations on a center manifold in analytic or smooth systems depending on parameters. We then apply it to the investigation of limit cycle bifurcations in a model of calcium oscillations in the cilia of olfactory sensory neurons and show that it can have two limit cycles: a stable cycle appearing after a Bautin (generalized Hopf) bifurcation and an unstable cycle appearing after a subcritical Hopf bifurcation.


Sign in / Sign up

Export Citation Format

Share Document