delay differential equations
Recently Published Documents


TOTAL DOCUMENTS

2448
(FIVE YEARS 750)

H-INDEX

61
(FIVE YEARS 16)

Author(s):  
Frede Nidal Anakira ◽  
Ali Jameel ◽  
Mohmmad Hijazi ◽  
Abdel-Kareem Alomari ◽  
Noraziah Man

<p>In this paper, a modified procedure based on the residual power series method (RPSM) was implemented to achieve approximate solution with high degree of accuracy for a system of multi-pantograph type delay differential equations (DDEs). This modified procedure is considered as a hybrid technique used to improve the curacy of the standard RPSM by combining the RPSM, Laplace transform and Pade approximant to be a powerful technique that can be solve the problems directly without large computational work, also even enlarge domain and leads to very accurate solutions or gives the exact solutions which is consider the best advantage of this technique. Some numerical applications are illustrated and numerical results are provided to prove the validity and the ability of this technique for this type of important differential equation that appears in different applications in engineering and control system.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Eman Ziada

In this paper, a multi-term nonlinear delay differential equation (DDE) of arbitrary order is studied.Adomian decomposition method (ADM) is used to solve these types of equations. Then the existence andstability of a unique solution will be proved. Convergence analysis of ADM is discussed. Moreover, themaximum absolute truncated error of Adomian’s series solution is estimated. The stability of the solutionis also discussed.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document