singularly perturbed systems
Recently Published Documents


TOTAL DOCUMENTS

852
(FIVE YEARS 123)

H-INDEX

39
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Wei Liu ◽  
Yanyan Wang ◽  
Zhiming Wang

Abstract This paper is concerned with the robust stability and stabilization problems of discrete-time singularly perturbed systems (DTSPSs) with nonlinear perturbations. A proper sufficient condition via the fixed-point principle is proposed to guarantee that the given system is in a standard form. Then, based on the singular perturbation approach, a linear matrix inequality (LMI) based sufficient condition is presented such that the original system is standard and input-to-state stable (ISS) simultaneously. Thus, it can be easily verified for it only depends on the solution of an LMI. After that, for the case where the nominal system is unstable, the problem of designing a control law to make the resulting closed-loop system ISS is addressed. To achieve this, a sufficient condition is proposed via LMI techniques for the purpose of implementation. The criteria presented in this paper are independent of the small parameter and the stability bound can be derived effectively by solving an optimal problem. Finally, the effectiveness of the obtained theoretical results is illustrated by two numerical examples.


Author(s):  
Alla Savranska ◽  
Oleksandr Denisenko

The subject of research in the article is sigularly perturbed controllable systems of differential equations containing terms with a small parameters on the right-hand side, which are not completely known, but only satisfy some constraints. The aim of the work is to expand the study of the behavior of solutions of singularly perturbed systems of differential equations to the case when the system is influenced not only by dynamic (small factor at the derivative) but also parametric (small factor at the right side of equations) uncertainties and to determine conditions under which such systems will be asymptotically resistant to any perturbations, estimate the upper limit of the small parameter, so that for all values of this parameter less than the obtained estimate, the undisturbed solution of the system was asymptotically stable. The following problems are solved in the article: singularly perturbed systems of differential equations with regular perturbations in the form of terms with a small parameter in the right-hand sides, which are not fully known, are investigated; an estimate is made of the areas of asymptotic stability of the unperturbed solution of such systems, that is, the class of systems that can be investigated for stability is expanded, the formulas obtained that allow one to analyze the asymptotic stability of solutions to systems even under conditions of incomplete information about the perturbations acting on them. The following methods are used: mathematical modeling of complex control systems; vector Lyapunov functions investigation of asymptotic stability of solutions of systems of differential equations. The following results were obtained: an estimate was made for the upper bound of a small parameter for sigularly perturbed systems of differential equations with fully known parametric (fully known) and dynamic uncertainties, such that for all values of this parameter less than the obtained estimate, such an unperturbed solution is asymptotically stable; a theorem is proved in which sufficient conditions for the uniform asymptotic stability of such a system are formulated. Conclusions: the method of vector Lyapunov functions extends to the class of singularly perturbed systems of differential equations with a small factor in the right-hand sides, which are not completely known, but only satisfy certain constraints.


Sign in / Sign up

Export Citation Format

Share Document