A fully discrete H 1-Galerkin method with quadrature for nonlinear advection–diffusion–reaction equations

2007 ◽  
Vol 43 (4) ◽  
pp. 355-383 ◽  
Author(s):  
M. Ganesh ◽  
K. Mustapha
Author(s):  
Ihteram Ali ◽  
Sirajul Haq ◽  
Kottakkaran Sooppy Nisar ◽  
Shams Ul Arifeen

AbstractIn this work, a numerical scheme based on combined Lucas and Fibonacci polynomials is proposed for one- and two-dimensional nonlinear advection–diffusion–reaction equations. Initially, the given partial differential equation (PDE) reduces to discrete form using finite difference method and $$\theta -$$ θ - weighted scheme. Thereafter, the unknown functions have been approximated by Lucas polynomial while their derivatives by Fibonacci polynomials. With the help of these approximations, the nonlinear PDE transforms into a system of algebraic equations which can be solved easily. Convergence of the method has been investigated theoretically as well as numerically. Performance of the proposed method has been verified with the help of some test problems. Efficiency of the technique is examined in terms of root mean square (RMS), $$L_2$$ L 2 and $$L_\infty $$ L ∞ error norms. The obtained results are then compared with those available in the literature.


Sign in / Sign up

Export Citation Format

Share Document