Transport in Porous Media
Latest Publications


TOTAL DOCUMENTS

3523
(FIVE YEARS 501)

H-INDEX

80
(FIVE YEARS 9)

Published By Springer-Verlag

1573-1634, 0169-3913

Author(s):  
Alraune Zech ◽  
Matthijs de Winter

AbstractWe investigate the upscaling of diffusive transport parameters using a stochastic framework. At sub-REV (representative elementary volume) scale, the complexity of the pore space geometry leads to a significant scatter of the observed diffusive transport. We study a large set of volumes reconstructed from focused ion beam-scanning electron microscopy data. Each individual volume provides us sub-REV measurements on porosity and the so-called transport-ability, being a dimensionless parameter representing the ratio of diffusive flux through the porous volume to that through an empty volume. The detected scatter of the transport-ability is mathematically characterized through a probability distribution function (PDF) with a mean and variance as function of porosity, which includes implicitly the effect of pore structure differences among sub-REV volumes. We then investigate domain size effects and predict when REV scale is reached. While the scatter in porosity observations decreases linearly with increasing sample size as expected, the observed scatter in transport-ability does not converge to zero. Our results confirm that differences in pore structure impact transport parameters at all scales. Consequently, the use of PDFs to describe the relationship of effective transport coefficients to porosity is advantageous to deterministic semiempirical functions. We discuss the consequences and advocate the use of PDFs for effective parameters in both continuum equations and data interpretation of experimental or computational work. The presented statistics-based upscaling technique of sub-REV microscopy data provides a new tool in understanding, describing and predicting macroscopic transport behavior of microporous media.


Author(s):  
Nerine Joewondo ◽  
Valeria Garbin ◽  
Ronny Pini

AbstractUnderstanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, $${B^k/\ell }$$ B k / ℓ , where the constant $$\ell$$ ℓ is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset.


Author(s):  
Ryan L. Payton ◽  
Yizhuo Sun ◽  
Domenico Chiarella ◽  
Andrew Kingdon

Abstract Mineral trapping (MT)is the most secure method of sequestering carbon for geologically significant periods of time. The processes behind MT fundamentally occur at the pore scale, therefore understanding which factors control MT at this scale is crucial. We present a finite elements advection–diffusion–reaction numerical model which uses true pore geometry model domains generated from $$\upmu$$ μ CT imaging. Using this model, we investigate the impact of pore geometry features such as branching, tortuosity and throat radii on the distribution and occurrence of carbonate precipitation in different pore networks over 2000 year simulated periods. We find evidence that a greater tortuosity, greater degree of branching of a pore network and narrower pore throats are detrimental to MT and contribute to the risk of clogging and reduction of connected porosity. We suggest that a tortuosity of less than 2 is critical in promoting greater precipitation per unit volume and should be considered alongside porosity and permeability when assessing reservoirs for geological carbon storage (GCS). We also show that the dominant influence on precipitated mass is the Damköhler number, or reaction rate, rather than the availability of reactive minerals, suggesting that this should be the focus when engineering effective subsurface carbon storage reservoirs for long term security. Article Highlights The rate of reaction has a stronger influence on mineral precipitation than the amount of available reactant. In a fully connected pore network preferential flow pathways still form which results in uneven precipitate distribution. A pore network tortuosity of <2 is recommended to facilitate greater carbon mineralisation.


Author(s):  
Amanzhol Kubeyev ◽  
Nathaniel Forbes Inskip ◽  
Tomos Phillips ◽  
Yihuai Zhang ◽  
Christine Maier ◽  
...  

AbstractFlow in fractures is sensitive to their geometrical surface characteristics. The surface can undergo deformation if there is a change in stress. Natural fractures have complex geometries and rough surfaces which complicates the modelling of deformation and fluid flow. In this paper, we present a computational model that takes a digital image of a rough fracture surface and provides a stress–permeability relationship. The model is based on a first-principle contact mechanics approach at the continuum scale. Using this first principle approach, we investigate numerically the effect of fracture surface roughness and shifting of surfaces on the permeability evolution under applied stress and compare the results with laboratory experiments. A mudrock core fracture surface was digitalized using an optical microscope, and 2D cross sections through fracture surface profiles were taken for the modelling. Mechanical deformation is simulated with the contact mechanics based Virtual Element Method solver that we developed within the MATLAB Reservoir Simulation Toolbox platform. The permeability perpendicular to the fracture cross section is determined by solving the Stokes equation using the Finite Volume Method. A source of uncertainty in reproducing laboratory results is that the exact anchoring of the two opposite surfaces is difficult to determine while the stress–permeability relationship is sensitive to the exact positioning. We, therefore, investigate the sensitivity to a mismatch in two scenarios: First, we assess the stress–permeability of a fracture created using two opposing matched surfaces from the rock sample, consequently applying relative shear. Second, we assess the stress–permeability of fractures created by randomly selecting opposing surfaces from that sample. We find that a larger shift leads to a smaller drop in permeability due to applied stress, which is in line with a previous laboratory study. We also find that permeability tends to be higher in fractures with higher roughness within the investigated stress range. Finally, we provide empirical stress–permeability relationships for various relative shears and roughnesses for use in hydro-mechanical studies of fractured geological formations.


Author(s):  
Yin Chen ◽  
Yadan Mao ◽  
Liu Yang ◽  
Wei Wei ◽  
Qingbang Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document