test problems
Recently Published Documents


TOTAL DOCUMENTS

1348
(FIVE YEARS 380)

H-INDEX

52
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 617
Author(s):  
P. Arun Mozhi Devan ◽  
Fawnizu Azmadi Hussin ◽  
Rosdiazli B. Ibrahim ◽  
Kishore Bingi ◽  
M. Nagarajapandian ◽  
...  

This paper proposes a novel hybrid arithmetic–trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Chen ◽  
Jiaxin Liu ◽  
Pingfei Xu

AbstractOne of the key issues that affect the optimization effect of the efficient global optimization (EGO) algorithm is to determine the infill sampling criterion. Therefore, this paper compares the common efficient parallel infill sampling criterion. In addition, the pseudo-expected improvement (EI) criterion is introduced to minimizing the predicted (MP) criterion and the probability of improvement (PI) criterion, which helps to improve the problem of MP criterion that is easy to fall into local optimum. An adaptive distance function is proposed, which is used to avoid the concentration problem of update points and also improves the global search ability of the infill sampling criterion. Seven test problems were used to evaluate these criteria to verify the effectiveness of these methods. The results show that the pseudo method is also applicable to PI and MP criteria. The DMP and PEI criteria are the most efficient and robust. The actual engineering optimization problems can more directly show the effects of these methods. So these criteria are applied to the inverse design of RAE2822 airfoil. The results show the criterion including the MP has higher optimization efficiency.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Alemayehu Tamirie Deresse

In this paper, the combined double Sumudu transform with iterative method is successfully implemented to obtain the approximate analytical solution of the one-dimensional coupled nonlinear sine-Gordon equation (NLSGE) subject to the appropriate initial and boundary conditions which cannot be solved by applying double Sumudu transform only. The solution of the nonlinear part of this equation was solved by a successive iterative method, the proposed technique has the advantage of producing an exact solution, and it is easily applied to the given problems analytically. Two test problems from mathematical physics were taken to show the liability, accuracy, convergence, and efficiency of the proposed method. Furthermore, the results indicate that the introduced method is promising for solving other types of systems of NLPDEs.


Author(s):  
John A Turner ◽  
James Belak ◽  
Nathan Barton ◽  
Matthew Bement ◽  
Neil Carlson ◽  
...  

Additive manufacturing (AM), or 3D printing, of metals is transforming the fabrication of components, in part by dramatically expanding the design space, allowing optimization of shape and topology. However, although the physical processes involved in AM are similar to those of welding, a field with decades of experimental, modeling, simulation, and characterization experience, qualification of AM parts remains a challenge. The availability of exascale computational systems, particularly when combined with data-driven approaches such as machine learning, enables topology and shape optimization as well as accelerated qualification by providing process-aware, locally accurate microstructure and mechanical property models. We describe the physics components comprising the Exascale Additive Manufacturing simulation environment and report progress using highly resolved melt pool simulations to inform part-scale finite element thermomechanics simulations, drive microstructure evolution, and determine constitutive mechanical property relationships based on those microstructures using polycrystal plasticity. We report on implementation of these components for exascale computing architectures, as well as the multi-stage simulation workflow that provides a unique high-fidelity model of process–structure–property relationships for AM parts. In addition, we discuss verification and validation through collaboration with efforts such as AM-Bench, a set of benchmark test problems under development by a team led by the National Institute of Standards and Technology.


2022 ◽  
Vol 412 ◽  
pp. 126577
Author(s):  
Jesús-Adolfo Mejía-de-Dios ◽  
Efrén Mezura-Montes ◽  
Porfirio Toledo-Hernández

Author(s):  
Ekaterina Pavlovna Eremenko ◽  
Andrey Viktorovich Kalinkin ◽  
Boris Evgenievich Borodulin ◽  
Evgeniya Andreevna Amosova ◽  
Elizaveta Sergeevna Vdoushkina ◽  
...  

The quality of training of medical specialists is laid down during training at a medical university, where basic knowledge and the ability to manipulate them are laid, and, on the basis of the acquired competencies, to form practical skills. The issues of tuberculosis infection occupy a significant part in the work of a pediatrician. First of all, these are the issues of screening the child population for tuberculosis, early detection and specific prevention of tuberculosis. For the effective preparation of students of the pediatric faculty, it is necessary to lay theoretical knowledge in the program, to form practical skills and abilities. Since the detection of tuberculosis patients is carried out in medical institutions of the general pediatric network, it is necessary to master professional competencies. The preparation of students within the framework of the basic specialty "phthisiology" has its own nuances due to the specifics of medical education, the diversity of tuberculosis infection, the peculiarities of the organization and provision of anti-tuberculosis care to the child population. Training in the specialty "phthisiology" requires a large amount of special knowledge, skills, improvement of the interdisciplinary approach, in accordance with the requirements of the federal state educational standard. The article provides an analysis of the ongoing training system for students of the pediatric institute in the online system, presents the experience of the department in teaching students during the period of distance education during the spread of a new coronavirus infection. The assessment of the results of practical training among 6th year students of the pediatric faculty (n = 123). It was revealed that it is not always possible to predict in advance the degree of understanding of the educational material, and even the depth of understanding the questions in the test problems. The use of scientific evidence-based statistical methods for evaluating test items helps in optimizing and objectifying knowledge control and understanding the educational material.


2021 ◽  
pp. 44-54
Author(s):  
O. V Vorobiev ◽  
E. V Semenova ◽  
D. A Mukhin ◽  
E. O Statsenko ◽  
T. V Baltina ◽  
...  

The article presents one of the possible approaches to modeling objects with anisotropic properties based on images of the study area. Data from such images are taken into account when building a numerical model. In this case, material inhomogeneity can be included by integrating the local stiffness matrix of each finite element with a certain weight function. The purpose of the presented work is to develop a finite element for the formation of a computational ensemble and simulation of mechanical behavior taking into account the data of two-dimensional medical images. To implement the proposed approach, we used the assumption that there is a correlation between the values in the image pixels and the elastic properties of the material. Meshing was based on a four-node plane finite element. This approach allows using the quantitative phase or scanning electronic images, as well as computed tomography data. A number of test problems for compression of elementary geometry samples were calculated. The distal part of the rat femur was considered as a model problem. A computed tomography scan of the sample was used to construct a numerical model taking into account the inhomogeneity of the material distribution inside the organ. The distribution field of the nodal displacements based on data obtained from the images of the study area is presented. Within the framework of a model problem, we considered how a computer tomograph resolution influences the quality of the obtained results. For this purpose, calculations were carried out based on compressed input medical images.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wonkyeong Kim ◽  
Sooyoung Choi ◽  
Deokjung Lee

The pin-based pointwise energy slowing-down method (PSM) has been refined through eliminating the approximation for using the pre-tabulated collision probability during the slowing-down calculation. A collision probability table is generated by assuming that material composition and temperature are constant in the fuel pellet using the collision probability method (CPM). Refined PSM (PSM-CPM), which calculates the collision probability in the isolated fuel pellet during the slowing-down calculation using CPM, can consider nonuniform material and temperature distribution. For the methods, the extensive comparative analysis is performed with problems representing various possible conditions in a light water reactor (LWR) design. Conditions are categorized with the geometry, material distribution, temperature profile in the fuel pellet, and burnup. With test problems, PSMs (PSM and PSM-CPM) have been compared with conventional methods based on the equivalence theory. With overall calculation results, PSMs show the accuracy in the eigenvalue with differences in the order of 100 pcm compared to the reference results. There was no noticeable difference in the multigroup cross sections, reaction rates, and pin power distributions. However, PSM-CPM maintains the accuracy in the calculation of the fuel temperature coefficient under the condition with 200% power and nonuniform temperature distribution in the fuel pellet. PSM shows the difference in the eigenvalue in the order of 2,000 pcm for the fictitious pin-cell problem with highly steep temperature profiles and material compositions, but PSM-CPM shows the difference in the eigenvalue within 100 pcm.


2021 ◽  
Vol 66 (4) ◽  
pp. 757-768
Author(s):  
Ioannis K. Argyros ◽  
◽  
Santhosh George ◽  
Kedarnath Senapati ◽  
◽  
...  

We present the local convergence of a Newton-type solver for equations involving Banach space valued operators. The eighth order of convergence was shown earlier in the special case of the k-dimensional Euclidean space, using hypotheses up to the eighth derivative although these derivatives do not appear in the method. We show convergence using only the rst derivative. This way we extend the applicability of the methods. Numerical examples are used to show the convergence conditions. Finally, the basins of attraction of the method, on some test problems are presented.


Author(s):  
Chao Ma

This study proposed a discrete structural optimization method for a framed automotive body. Up to four types of discrete design variables are considered simultaneously, that is, the sizing, cross-sectional shape, topology, and material variables. Firstly, to solve the nonconvex and nonlinear optimization problem, the original non-dominated sorting genetic algorithm, the third version (NSGA-III), is adapted. An improved extreme points identification scheme and a new mutation operator are proposed to stabilize the normalization of the population and accommodate the manufacturing constraints, respectively. Two test problems demonstrate that the modified NSGA-III can handle continuous and discontinuous multiple objective optimization. Subsequently, the classical 10-bar truss is used to illustrate the proposed method. A weight reduction of 4.5 kg is achieved as compared to previous optimal designs in the literature. Finally, a framed automotive body is optimized for maximizing the first order natural frequency and minimizing the total mass, the maximum stresses and the maximum displacements in different load cases and the manufacturing cost. The results obtained by different optimization procedures are presented and discussed. The results demonstrate the feasibility and effectiveness of the proposed method. A weight reduction of 17.59% is achieved while other structural performances satisfy the design requirements.


Sign in / Sign up

Export Citation Format

Share Document