Estimating upper bounds on the limit points of majorizing sequences for Newton’s method

2012 ◽  
Vol 62 (1) ◽  
pp. 115-132 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Saïd Hilout
1971 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
G. A. Thurston

A modification of Newton’s method is applied to the solution of the nonlinear differential equations for clamped, shallow spherical caps under uniform pressure. The linear form of Newton’s method or quasi-linearization breaks down at limit points of the differential equations. A simplified “quadratic form” is derived in the paper and shown to be satisfactory for continuing the solution past the limit point and into the postbuckling region. Results for the buckling pressures defined by the limit points agree with published results for perfect caps. New results are presented for imperfect caps that check experiment.


2013 ◽  
Vol 10 (04) ◽  
pp. 1350021 ◽  
Author(s):  
M. PRASHANTH ◽  
D. K. GUPTA

A continuation method is a parameter based iterative method establishing a continuous connection between two given functions/operators and used for solving nonlinear equations in Banach spaces. The semilocal convergence of a continuation method combining Chebyshev's method and Convex acceleration of Newton's method for solving nonlinear equations in Banach spaces is established in [J. A. Ezquerro, J. M. Gutiérrez and M. A. Hernández [1997] J. Appl. Math. Comput.85: 181–199] using majorizing sequences under the assumption that the second Frechet derivative satisfies the Lipschitz continuity condition. The aim of this paper is to use recurrence relations instead of majorizing sequences to establish the convergence analysis of such a method. This leads to a simpler approach with improved results. An existence–uniqueness theorem is given. Also, a closed form of error bounds is derived in terms of a real parameter α ∈ [0, 1]. Four numerical examples are worked out to demonstrate the efficacy of our convergence analysis. On comparing the existence and uniqueness region and error bounds for the solution obtained by our analysis with those obtained by using majorizing sequences, it is found that our analysis gives better results in three examples, whereas in one example it gives the same results. Further, we have observed that for particular values of the α, our analysis reduces to those for Chebyshev's method (α = 0) and Convex acceleration of Newton's method (α = 1) respectively with improved results.


1969 ◽  
Vol 36 (3) ◽  
pp. 425-430 ◽  
Author(s):  
G. A. Thurston

A modification of Newton’s method is suggested that provides a practical means of continuing solutions of nonlinear differential equations through limit points or bifurcation points. The method is applicable when the linear “variational” equations for the problem are self-adjoint. The procedure is illustrated by examples from the field of elastic stability.


1998 ◽  
Vol 29 (3) ◽  
pp. 199-202
Author(s):  
J. M. GUTIERREZ ◽  
M. A. HERNANDEZ

Majorizing sequences for Newton's method are analysed from a new standpoint. As a consequence, we give convergence results under assumptions different from the classical Kantorovich conditions.


2012 ◽  
Vol 3 (2) ◽  
pp. 167-169
Author(s):  
F.M.PATEL F.M.PATEL ◽  
◽  
N. B. PANCHAL N. B. PANCHAL

Sign in / Sign up

Export Citation Format

Share Document