Semilocal convergence of multi-point improved super-Halley-type methods without the second derivative under generalized weak condition

2015 ◽  
Vol 71 (3) ◽  
pp. 567-584 ◽  
Author(s):  
Xiuhua Wang ◽  
Jisheng Kou
2016 ◽  
Vol 19 (1) ◽  
pp. 293-302
Author(s):  
Xiuhua Wang ◽  
Jisheng Kou

In this paper, the semilocal convergence for ameliorated super-Halley methods in Banach spaces is considered. Different from the results in [J. M. Gutiérrez and M. A. Hernández, Comput. Math. Appl. 36 (1998) 1–8], these ameliorated methods do not need to compute a second derivative, the computation for inversion is reduced and the $R$-order is also heightened. Under a weaker condition, an existence–uniqueness theorem for the solution is proved.


2017 ◽  
Vol 7 (3) ◽  
pp. 482-494
Author(s):  
Rong-Fei Lin ◽  
Qing-Biao Wu ◽  
Min-Hong Chen ◽  
Lu Liu ◽  
Ping-Fei Dai

AbstractThe semilocal convergence of a third-order Newton-like method for solving nonlinear equations is considered. Under a weak condition (the so-called γ-condition) on the derivative of the nonlinear operator, we establish a new semilocal convergence theorem for the Newton-like method and also provide an error estimate. Some numerical examples show the applicability and efficiency of our result, in comparison to other semilocal convergence theorems.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Xiubin Xu ◽  
Yuan Xiao ◽  
Tao Liu

Under the hypothesis that the first derivative satisfies some kind of weak Lipschitz conditions, a new semilocal convergence theorem for inexact Newton method is presented. Unified convergence criteria ensuring the convergence of inexact Newton method are also established. Applications to some special cases such as the Kantorovich type conditions andγ-Conditions are provided and some well-known convergence theorems for Newton's method are obtained as corollaries.


Author(s):  
Himanshu Kumar

AbstractThe purpose of this paper to establish the semilocal convergence analysis of three-step Kurchatov method under weaker conditions in Banach spaces. We construct the recurrence relations under the assumption that involved first-order divided difference operators satisfy the $$\omega $$ ω condition. Theorems are given for the existence-uniqueness balls enclosing the unique solution. The application of the iterative method is shown by solving nonlinear system of equations and nonlinear Hammerstein-type integral equations. It illustrates the theoretical development of this study.


1994 ◽  
Vol 86 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Haiping Su ◽  
Michel D. Ransom ◽  
Edward T. Kanemasu ◽  
Tanvir H. Demetriades‐Shah

2017 ◽  
Vol 919 (1) ◽  
pp. 7-12
Author(s):  
N.A Sorokin

The method of the geopotential parameters determination with the use of the gradiometry data is considered. The second derivative of the gravitational potential in the correction equation on the rectangular coordinates x, y, z is used as a measured variable. For the calculated value of the measured quantity required for the formation of a free member of the correction equation, the the Cunningham polynomials were used. We give algorithms for computing the second derivatives of the Cunningham polynomials on rectangular coordinates x, y, z, which allow to calculate the second derivatives of the geopotential at the rectangular coordinates x, y, z.Then we convert derivatives obtained from the Cartesian coordinate system in the coordinate system of the gradiometer, which allow to calculate the free term of the correction equation. Afterwards the correction equation coefficients are calculated by differentiating the formula for calculating the second derivative of the gravitational potential on the rectangular coordinates x, y, z. The result is a coefficient matrix of the correction equations and corrections vector of the free members of equations for each component of the tensor of the geopotential. As the number of conditional equations is much more than the number of the specified parameters, we go to the drawing up of the system of normal equations, from which solutions we determine the required corrections to the harmonic coefficients.


Sign in / Sign up

Export Citation Format

Share Document