difference operators
Recently Published Documents


TOTAL DOCUMENTS

732
(FIVE YEARS 125)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Vol 7 (4) ◽  
pp. 5133-5145
Author(s):  
Jingjing Li ◽  
◽  
Zhigang Huang

<abstract><p>In this paper, we mainly investigate the radial distribution of Julia sets of difference operators of entire solutions of complex differential equation $ F(z)f^{n}(z)+P(z, f) = 0 $, where $ F(z) $ is a transcendental entire function and $ P(z, f) $ is a differential polynomial in $ f $ and its derivatives. We obtain that the set of common limiting directions of Julia sets of non-trivial entire solutions, their shifts have a definite range of measure. Moreover, an estimate of lower bound of measure of the set of limiting directions of Jackson difference operators of non-trivial entire solutions is given.</p></abstract>


Author(s):  
Ari Laptev ◽  
◽  
Lukas Schimmer ◽  

We prove sharp Lieb-Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated to mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2303
Author(s):  
Thongchai Dumrongpokaphan ◽  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

In this article, we present a nonlocal Neumann boundary value problems for separate sequential fractional symmetric Hahn integrodifference equation. The problem contains five fractional symmetric Hahn difference operators and one fractional symmetric Hahn integral of different orders. We employ Banach fixed point theorem and Schauder’s fixed point theorem to study the existence results of the problem.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Rujira Ouncharoen ◽  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

The existence of solutions of nonlocal fractional symmetric Hahn integrodifference boundary value problem is studied. We propose a problem of five fractional symmetric Hahn difference operators and three fractional symmetric Hahn integrals of different orders. We first convert our nonlinear problem into a fixed point problem by considering a linear variant of the problem. When the fixed point operator is available, Banach and Schauder’s fixed point theorems are used to prove the existence results of our problem. Some properties of (q,ω)-integral are also presented in this paper as a tool for our calculations. Finally, an example is also constructed to illustrate the main results.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1900
Author(s):  
Anton A. Kutsenko

The infinite product of matrices with integer entries, known as a modified Glimm–Bratteli symbol n, is a new, sufficiently simple, and very powerful tool for the characterization of approximately finite-dimensional (AF) algebras. This symbol provides a convenient algebraic representation of the Bratteli diagram for AF algebras in the same way as was previously performed by J. Glimm for more simple uniformly hyperfinite (UHF) algebras. We apply this symbol to characterize integrodifferential algebras. The integrodifferential algebra FN,M is the C*-algebra generated by the following operators acting on L2([0,1)N→CM): (1) operators of multiplication by bounded matrix-valued functions, (2) finite-difference operators, and (3) integral operators. Most of the operators and their approximations studying in physics belong to these algebras. We give a complete characterization of FN,M. In particular, we show that FN,M does not depend on M, but depends on N. At the same time, it is known that differential algebras HN,M, generated by the operators (1) and (2) only, do not depend on both dimensions N and M; they are all *-isomorphic to the universal UHF algebra. We explicitly compute the Glimm–Bratteli symbols (for HN,M, it was already computed earlier) which completely characterize the corresponding AF algebras. This symbol n is an infinite product of matrices with nonnegative integer entries. Roughly speaking, all the symmetries appearing in the approximation of complex infinite-dimensional integrodifferential and differential algebras by finite-dimensional ones are coded by a product of integer matrices.


2021 ◽  
Vol 61 (10) ◽  
pp. 1582-1589
Author(s):  
S. A. Abramov ◽  
M. A. Barkatou ◽  
M. Petkovšek

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Sofia Eriksson

AbstractThe scalar, one-dimensional advection equation and heat equation are considered. These equations are discretized in space, using a finite difference method satisfying summation-by-parts (SBP) properties. To impose the boundary conditions, we use a penalty method called simultaneous approximation term (SAT). Together, this gives rise to two semi-discrete schemes where the discretization matrices approximate the first and the second derivative operators, respectively. The discretization matrices depend on free parameters from the SAT treatment. We derive the inverses of the discretization matrices, interpreting them as discrete Green’s functions. In this direct way, we also find out precisely which choices of SAT parameters that make the discretization matrices singular. In the second derivative case, it is shown that if the penalty parameters are chosen such that the semi-discrete scheme is dual consistent, the discretization matrix can become singular even when the scheme is energy stable. The inverse formulas hold for SBP-SAT operators of arbitrary order of accuracy. For second and fourth order accurate operators, the inverses are provided explicitly.


Sign in / Sign up

Export Citation Format

Share Document