nonlinear operator
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 53)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Janusz Brzdęk ◽  
Nasrin Eghbali ◽  
Vida Kalvandi

AbstractWe investigate Ulam stability of a general delayed differential equation of a fractional order. We provide formulas showing how to generate the exact solutions of the equation using functions that satisfy it only approximately. Namely, the approximate solution $$\phi $$ ϕ generates the exact solution as a pointwise limit of the sequence $$\varLambda ^n\phi $$ Λ n ϕ with some integral (possibly, nonlinear) operator $$\varLambda $$ Λ . We estimate the speed of convergence and the distance between those approximate and exact solutions. Moreover, we provide some exemplary calculations, involving the Chebyshev and Bielecki norms and some semigauges, that could help to obtain reasonable outcomes for such estimations in some particular cases. The main tool is the Diaz–Margolis fixed point alternative.


Author(s):  
Yucheng Tu

AbstractWe prove sharp lower bound estimates for the first nonzero eigenvalue of the non-linear elliptic diffusion operator $$L_p$$ L p on a smooth metric measure space, without boundary or with a convex boundary and Neumann boundary condition, satisfying $$BE(\kappa ,N)$$ B E ( κ , N ) for $$\kappa \ne 0$$ κ ≠ 0 . Our results extends the work of Koerber Valtorta (Calc Vari Partial Differ Equ. 57(2), 49 2018) for case $$\kappa =0$$ κ = 0 and Naber–Valtorta (Math Z 277(3–4):867–891, 2014) for the p-Laplacian.


Author(s):  
Jinwan Park

In this paper, we study the tangential touch and [Formula: see text] regularity of the free boundary near the fixed boundary of the double obstacle problem for Laplacian and fully nonlinear operator. The main idea to have the properties is regarding the upper obstacle as a solution of the single obstacle problem. Then, in the classification of global solutions of the double problem, it is enough to consider only two cases for the upper obstacle, [Formula: see text] The second one is a new type of upper obstacle, which does not exist in the study of local regularity of the free boundary of the double problem. Thus, in this paper, a new type of difficulties that come from the second type upper obstacle is mainly studied.


2021 ◽  
Vol 7 (5) ◽  
pp. 2111-2126
Author(s):  
Yang Zhou ◽  
Cuimei Li

There is a problem of low accuracy in the analysis of the vibration of the numerical solution of the nonlinear operator equation. In this work, the vibration analysis equation is constructed by the step-by-step search method, and the vibration quadrant of the equation is divided by the dichotomy method. The vibration spectrum is determined by the iteration method, and the vibration analysis model of the numerical solution of the nonlinear operator equation is constructed. The vibration analysis of the numerical solution of the nonlinear operator equation is completed based on the solution of the model and the numerical calculation and display of the step-by-step Fourier. The experimental results show that the proposed method has higher accuracy than the traditional vibration analysis method, which meets the requirements of the vibration analysis of the numerical solution of nonlinear operator equation.


Author(s):  
Ilya V. Boykov ◽  
Vladimir A. Roudnev ◽  
Alla I. Boykova ◽  
Nikita S. Stepanov

Abstract. We describe the continuous operator method for solution nonlinear operator equations and discuss its application for investigating direct and inverse scattering problems. The continuous operator method is based on the Lyapunov theory stability of solutions of ordinary differential equations systems. It is applicable to operator equations in Banach spaces, including in cases when the Frechet (Gateaux) derivative of a nonlinear operator is irreversible in a neighborhood of the initial value. In this paper, it is applied to the solution of the Dirichlet and Neumann problems for the Helmholtz equation and to determine the wave number in the inverse problem. The internal and external problems of Dirichlet and Neumann are considered. The Helmholtz equation is considered in domains with smooth and piecewise smooth boundaries. In the case when the Helmholtz equation is considered in domains with smooth boundaries, the existence and uniqueness of the solution follows from the classical potential theory. When solving the Helmholtz equation in domains with piecewise smooth boundaries, the Wiener regularization is carried out. The Dirichlet and Neumann problems for the Helmholtz equation are transformed by methods of potential theory into singular integral equations of the second kind and hypersingular integral equations of the first kind. For an approximate solution of singular and hypersingular integral equations, computational schemes of collocation and mechanical quadrature methods are constructed and substantiated. The features of the continuous method are illustrated with solving boundary problems for the Helmholtz equation. Approximate methods for reconstructing the wave number in the Helmholtz equation are considered.


Author(s):  
Stepan Shakhno ◽  
Halyna Yarmola

The problem of finding an approximate solution of a nonlinear equation with operator decomposition is considered. For equations of this type, a nonlinear operator can be represented as the sum of two operators – differentiable and nondifferentiable. For numerical solving such an equation, a differential-difference method, which contains the sum of the derivative of the differentiable part and the divided difference of the nondifferentiable part of the nonlinear operator, is proposed. Also, the proposed iterative process does not require finding the inverse operator. Instead of inverting the operator, its one-step approximation is used. The analysis of the local convergence of the method under the Lipschitz condition for the first-order divided differences and the bounded second derivative is carried out and the order of convergence is established.


2021 ◽  
Vol 24 (4) ◽  
pp. 966-1002
Author(s):  
Félix del Teso ◽  
David Gómez-Castro ◽  
Juan Luis Vázquez

Abstract We introduce three representation formulas for the fractional p-Laplace operator in the whole range of parameters 0 < s < 1 and 1 < p < ∞. Note that for p ≠ 2 this a nonlinear operator. The first representation is based on a splitting procedure that combines a renormalized nonlinearity with the linear heat semigroup. The second adapts the nonlinearity to the Caffarelli-Silvestre linear extension technique. The third one is the corresponding nonlinear version of the Balakrishnan formula. We also discuss the correct choice of the constant of the fractional p-Laplace operator in order to have continuous dependence as p → 2 and s → 0+, 1−. A number of consequences and proposals are derived. Thus, we propose a natural spectral-type operator in domains, different from the standard restriction of the fractional p-Laplace operator acting on the whole space. We also propose numerical schemes, a new definition of the fractional p-Laplacian on manifolds, as well as alternative characterizations of the W s, p (ℝ n ) seminorms.


2021 ◽  
Vol 57 (7) ◽  
pp. 868-875
Author(s):  
S. V. Gavrilov ◽  
A. M. Denisov

Abstract We consider the inverse problem of determining two unknown coefficients in a linear system of partial differential equations using additional information about one of the solution components. The problem is reduced to a nonlinear operator equation for one of the unknown coefficients. The successive approximation method and the Newton method are used to solve this operator equation numerically. Results of calculations illustrating the convergence of numerical methods for solving the inverse problem are presented.


Author(s):  
Iwona Chlebicka ◽  
Anna Zatorska-Goldstein

AbstractWe study properties of $\mathcal {A}$ A -harmonic and $\mathcal {A}$ A -superharmonic functions involving an operator having generalized Orlicz growth. Our framework embraces reflexive Orlicz spaces, as well as natural variants of variable exponent and double-phase spaces. In particular, Harnack’s Principle and Minimum Principle are provided for $\mathcal {A}$ A -superharmonic functions.


Sign in / Sign up

Export Citation Format

Share Document