A plane wave least squares method for the Maxwell equations in anisotropic media

Author(s):  
Long Yuan
2019 ◽  
Vol 53 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Qiya Hu ◽  
Rongrong Song

In this paper we are concerned with the plane wave method for the discretization of time-harmonic Maxwell’s equations in three dimensions. As pointed out in Hiptmair et al. (Math. Comput. 82 (2013) 247–268), it is difficult to derive a satisfactory L2 error estimate of the standard plane wave approximation of the time-harmonic Maxwell’s equations. We propose a variant of the plane wave least squares (PWLS) method and show that the new plane wave approximations yield the desired L2 error estimate. Moreover, the numerical results indicate that the new approximations have sightly smaller L2 errors than the standard plane wave approximations. More importantly, the results are derived for more general models in inhomogeneous media.


1980 ◽  
Vol 59 (9) ◽  
pp. 8
Author(s):  
D.E. Turnbull

2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


Sign in / Sign up

Export Citation Format

Share Document