potential field
Recently Published Documents


TOTAL DOCUMENTS

2717
(FIVE YEARS 597)

H-INDEX

60
(FIVE YEARS 9)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zheng Fang ◽  
Xifeng Liang

Purpose The results of obstacle avoidance path planning for the manipulator using artificial potential field (APF) method contain a large number of path nodes, which reduce the efficiency of manipulators. This paper aims to propose a new intelligent obstacle avoidance path planning method for picking robot to improve the efficiency of manipulators. Design/methodology/approach To improve the efficiency of the robot, this paper proposes a new intelligent obstacle avoidance path planning method for picking robot. In this method, we present a snake-tongue algorithm based on slope-type potential field and combine the snake-tongue algorithm with genetic algorithm (GA) and reinforcement learning (RL) to reduce the path length and the number of path nodes in the path planning results. Findings Simulation experiments were conducted with tomato string picking manipulator. The results showed that the path length is reduced from 4.1 to 2.979 m, the number of nodes is reduced from 31 to 3 and the working time of the robot is reduced from 87.35 to 37.12 s, after APF method combined with GA and RL. Originality/value This paper proposes a new improved method of APF, and combines it with GA and RL. The experimental results show that the new intelligent obstacle avoidance path planning method proposed in this paper is beneficial to improve the efficiency of the robotic arm. Graphical abstract Figure 1 According to principles of bionics, we propose a new path search method, snake-tongue algorithm, based on a slope-type potential field. At the same time, we use genetic algorithm to strengthen the ability of the artificial potential field method for path searching, so that it can complete the path searching in a variety of complex obstacle distribution situations with shorter path searching results. Reinforcement learning is used to reduce the number of path nodes, which is good for improving the efficiency of robot work. The use of genetic algorithm and reinforcement learning lays the foundation for intelligent control.


2022 ◽  
Vol 9 ◽  
Author(s):  
José P. Calderón ◽  
Luis A. Gallardo

Potential field data have long been used in geophysical exploration for archeological, mineral, and reservoir targets. For all these targets, the increased search of highly detailed three-dimensional subsurface volumes has also promoted the recollection of high-density contrast data sets. While there are several approaches to handle these large-scale inverse problems, most of them rely on either the extensive use of high-performance computing architectures or data-model compression strategies that may sacrifice some level of model resolution. We posit that the superposition and convolutional properties of the potential fields can be easily used to compress the information needed for data inversion and also to reduce significantly redundant mathematical computations. For this, we developed a convolution-based conjugate gradient 3D inversion algorithm for the most common types of potential field data. We demonstrate the performance of the algorithm using a resolution test and a synthetic experiment. We then apply our algorithm to gravity and magnetic data for a geothermal prospect in the Acoculco caldera in Mexico. The resulting three-dimensional model meaningfully determined the distribution of the existent volcanic infill in the caldera as well as the interrelation of various intrusions in the basement of the area. We propose that these intrusive bodies play an important role either as a low-permeability host of the heated fluid or as the heat source for the potential development of an enhanced geothermal system.


Author(s):  
Oussama Hamed ◽  
Mohamed Hamlich ◽  
Mohamed Ennaji

The cooperation and coordination in multi-robot systems is a popular topic in the field of robotics and artificial intelligence, thanks to its important role in solving problems that are better solved by several robots compared to a single robot. Cooperative hunting is one of the important problems that exist in many areas such as military and industry, requiring cooperation between robots in order to accomplish the hunting process effectively. This paper proposed a cooperative hunting strategy for a multi-robot system based on wolf swarm algorithm (WSA) and artificial potential field (APF) in order to hunt by several robots a dynamic target whose behavior is unexpected. The formation of the robots within the multi-robot system contains three types of roles: the leader, the follower, and the antagonist. Each role is characterized by a different cognitive behavior. The robots arrive at the hunting point accurately and rapidly while avoiding static and dynamic obstacles through the artificial potential field algorithm to hunt the moving target. Simulation results are given in this paper to demonstrate the validity and the effectiveness of the proposed strategy.


2021 ◽  
pp. 1-16
Author(s):  
Longzhen Zhai ◽  
Shaohong Feng

The optimal evacuation route in emergency evacuation can further reduce casualties. Therefore, path planning is of great significance to emergency evacuation. Aiming at the blindness and relatively slow convergence speed of ant colony algorithm path planning search, an improved ant colony algorithm is proposed by combining artificial potential field and quantum evolution theory. On the one hand, the evacuation environment of pedestrians is modeled by the grid method. Use the potential field force in the artificial potential field, the influence coefficient of the potential field force heuristic information, and the distance between the person and the target position in the ant colony algorithm to construct comprehensive heuristic information. On the other hand, the introduction of quantum evolutionary theory. The pheromone is represented by quantum bits, and the pheromone is updated by quantum revolving door feedback control. In this way, it can not only reflect the high efficiency of quantum parallel computing, but also have the better optimization ability of ant colony algorithm. A large number of simulation experiments show that the improved ant colony algorithm has a faster convergence rate and is more effective in evacuation path planning.


2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Zhongxian Zhu ◽  
Hongguang Lyu ◽  
Jundong Zhang ◽  
Yong Yin

A novel collision avoidance (CA) algorithm was proposed based on the modified artificial potential field (APF) method, to construct a practical ship automatic CA system. Considering the constraints of both the International Regulations for Preventing Collisions at Sea (COLREGS) and the motion characteristics of the ship, the multi-ship CA algorithm was realized by modifying the repulsive force model in the APF method. Furthermore, the distance from the closest point of approach-time to the closest point of approach (DCPA-TCPA) criterion was selected as the unique adjustable parameter from the perspective of navigation practice. Collaborative CA experiments were designed and conducted to validate the proposed algorithm. The results of the experiments revealed that the actual DCPA and TCPA agree well with the parameter setup that keeps the ship at a safe distance from other ships in complex encountering situations. Consequently, the algorithm proposed in this study can achieve efficient automatic CA with minimal parameter settings. Moreover, the navigators can easily accept and comprehend the adjustable parameters, enabling the algorithm to satisfy the demand of the engineering applications.


2021 ◽  
Vol 16 ◽  
Author(s):  
Hongxin Zhang ◽  
Jiaming Li ◽  
Rongzijun Shu ◽  
Hongyu Wang ◽  
Guangsen Li

Background: With the development of robotics, more and more robots are used in manufacturing. However, in actual work, safety accidents happen to robots from time to time. How to ensure the safe operation of robots in a limited and complex working environment is the key to improve robot technology. Therefore, it is of great significance to study the dynamic obstacle avoidance of robots in complex environment for improving the intelligence and safety of robots, and the application of human-robot collaboration. Objective: The primary purpose of this paper is to improve the traditional artificial potential field method, including he disadvantages that the improved target is inaccessible and easily plunged into local optimal solution of the drawback of the improved method, second. Secondly, the background difference method based on binocular vision and Kalman filtering algorithm, and the environmental map containing the static and dynamic obstacles is obtained. After obtaining the position information of static and dynamic obstacles, the robot arm can make good use of the improved artificial potential field method to plan its own trajectory, thus realizing the dynamic obstacle avoidance of the robot arm in complex environment. Methodology: The background difference method and the Kalman filtering algorithm based on binocular vision were introduced to track the dynamic obstacles, and the improved artificial potential field method for path planning was applied to the dynamic obstacle avoidance path planning of the manipulator. Finally, the simulation and experimental results show that under the complex environment with dynamic obstacles exist, robot arm can realize independent dynamic obstacle avoidance. Results: By using background difference method and Kalman filtering algorithm to track the target in real time, the result showed that the target could be detected and tracked well. By improving the defect that the traditional artificial potential field method is easy to fall into local optimum, the improved algorithm can well realize the dynamic obstacle avoidance of the manipulator. Conclusions: For the development requirements of the industrial robots in the future, this paper based on binocular vision, which can make the manipulator realize more intelligent industrial production activities in complex working environment, meet the needs of future industrial development, and make this technology play an important role in production activities.


Sign in / Sign up

Export Citation Format

Share Document