scholarly journals Convergence properties of the Broyden-like method for mixed linear–nonlinear systems of equations

Author(s):  
Florian Mannel

AbstractWe consider the Broyden-like method for a nonlinear mapping $F:\mathbb {R}^{n}\rightarrow \mathbb {R}^{n}$ F : ℝ n → ℝ n that has some affine component functions, using an initial matrix B0 that agrees with the Jacobian of F in the rows that correspond to affine components of F. We show that in this setting, the iterates belong to an affine subspace and can be viewed as outcome of the Broyden-like method applied to a lower-dimensional mapping $G:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d}$ G : ℝ d → ℝ d , where d is the dimension of the affine subspace. We use this subspace property to make some small contributions to the decades-old question of whether the Broyden-like matrices converge: First, we observe that the only available result concerning this question cannot be applied if the iterates belong to a subspace because the required uniform linear independence does not hold. By generalizing the notion of uniform linear independence to subspaces, we can extend the available result to this setting. Second, we infer from the extended result that if at most one component of F is nonlinear while the others are affine and the associated n − 1 rows of the Jacobian of F agree with those of B0, then the Broyden-like matrices converge if the iterates converge; this holds whether the Jacobian at the root is invertible or not. In particular, this is the first time that convergence of the Broyden-like matrices is proven for n > 1, albeit for a special case only. Third, under the additional assumption that the Broyden-like method turns into Broyden’s method after a finite number of iterations, we prove that the convergence order of iterates and matrix updates is bounded from below by $\frac {\sqrt {5}+1}{2}$ 5 + 1 2 if the Jacobian at the root is invertible. If the nonlinear component of F is actually affine, we show finite convergence. We provide high-precision numerical experiments to confirm the results.

2018 ◽  
Vol 27 (02) ◽  
pp. 1850015 ◽  
Author(s):  
S. Cht. Mavrodiev ◽  
M. A. Deliyergiyev

We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numerically generalized semi-empirical mass formula of Bethe and von Weizsäcker. It was solved in a step-by-step way based on the AME2012 nuclear database. The established parametrization describes the measured nuclear masses of 2564 isotopes with a maximum deviation less than 2.6[Formula: see text]MeV, starting from the number of protons and number of neutrons equal to 1.The explicit form of unknown functions in the generalized mass formula was discovered in a step-by-step way using the modified least [Formula: see text] procedure, that realized in the algorithms which were developed by Lubomir Aleksandrov to solve the nonlinear systems of equations via the Gauss–Newton method, lets us to choose the better one between two functions with same [Formula: see text]. In the obtained generalized model, the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. The obtained results were compared with the predictions of other models.


Sign in / Sign up

Export Citation Format

Share Document