Convexity conditions for the space of regular operators

Positivity ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 445-459
Author(s):  
Zalina Kusraeva
2021 ◽  
Vol 143 (2) ◽  
pp. 301-335
Author(s):  
Jendrik Voss ◽  
Ionel-Dumitrel Ghiba ◽  
Robert J. Martin ◽  
Patrizio Neff

AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type $W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$ W ( F ) = μ 2 ∥ F ∥ 2 det F + f ( det F ) ; such an energy is rank-one convex if and only if the function $f$ f is convex.


1991 ◽  
Vol 2 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Wolfgang Arendt ◽  
Jürgen Voigt
Keyword(s):  

1968 ◽  
Vol 2 (2) ◽  
pp. 175-176 ◽  
Author(s):  
G. M. Vainikko ◽  
Yu. B. Umanskii
Keyword(s):  

Author(s):  
Mingyong Zhou

Background: Complex inverse problems such as Radar Imaging and CT/EIT imaging are well investigated in mathematical algorithms with various regularization methods. However it is difficult to obtain stable inverse solutions with fast convergence and high accuracy at the same time due to the ill-posed property and non-linear property. Objective: In this paper, we propose a hierarchical and multi-resolution scalable method from both algorithm perspective and hardware perspective to achieve fast and accurate solu-tions for inverse problems by taking radar and EIT imaging as examples. Method: We present an extension of discussion on neuromorphic computing as brain-inspired computing method and the learning/training algorithm to design a series of problem specific AI “brains” (with different memristive values) to solve a general complex ill-posed inverse problems that are traditionally solved by mathematical regular operators. We design a hierarchical and multi-resolution scalable method and an algorithm framework to train AI deep learning neuron network and map into the memristive circuit so that the memristive val-ues are optimally obtained. We propose FPGA as an emulation implementation for neuro-morphic circuit as well. Result: We compared the methodology between our approach and traditional regulariza-tion method. In particular we use Electrical Impedance Tomography (EIT) and Radar imaging as typical examples to compare how to design an AI deep learning neuron network architec-tures to solve inverse problems. Conclusion: With EIT imaging as a typical example, we show that any moderate complex inverse problem, as long as it can be described as combinational problem, AI deep learning neuron network is a practical alternative approach to try to solve the inverse problems with any given expected resolution accuracy, as long as the neuron network width is large enough and computational power is strong enough for all combination samples training purpose.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 629 ◽  
Author(s):  
Muhammad Arif ◽  
Omar Barkub ◽  
Hari Srivastava ◽  
Saleem Abdullah ◽  
Sher Khan

The motive behind this article is to apply the notions of q-derivative by introducing some new families of harmonic functions associated with the symmetric circular region. We develop a new criterion for sense preserving and hence the univalency in terms of q-differential operator. The necessary and sufficient conditions are established for univalency for this newly defined class. We also discuss some other interesting properties such as distortion limits, convolution preserving, and convexity conditions. Further, by using sufficient inequality, we establish sharp bounds of the real parts of the ratios of harmonic functions to its sequences of partial sums. Some known consequences of the main results are also obtained by varying the parameters.


Sign in / Sign up

Export Citation Format

Share Document