Sharp Rank-One Convexity Conditions in Planar Isotropic Elasticity for the Additive Volumetric-Isochoric Split
AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type $W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$ W ( F ) = μ 2 ∥ F ∥ 2 det F + f ( det F ) ; such an energy is rank-one convex if and only if the function $f$ f is convex.