scholarly journals Entanglement generation between distant parties via disordered spin chains

2019 ◽  
Vol 18 (2) ◽  
Author(s):  
Guilherme M. A. Almeida ◽  
Francisco A. B. F. de Moura ◽  
Marcelo L. Lyra
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Riegelmeyer ◽  
Dan Wignall ◽  
Marta P. Estarellas ◽  
Irene D’Amico ◽  
Timothy P. Spiller

AbstractEntanglement is a crucial resource for quantum information processing, and so protocols to generate high-fidelity entangled states on various hardware platforms are in demand. While spin chains have been extensively studied to generate entanglement, graph structures also have such potential; however, only a few classes of graphs have been explored for this specific task. In this paper, we apply a particular coupling scheme involving two different coupling strengths to a graph of two interconnected $$3\times 3$$ 3 × 3 square graphs such that it effectively contains three defects. We show how this structure allows generation of a Bell state whose fidelity depends on the chosen coupling ratio. We apply partitioned graph theory in order to reduce the dimension of the graph and show that, using a reduced graph or a reduced chain, we can still simulate the same protocol with identical dynamics. Finally, we investigate how fabrication errors affect the entanglement generation protocol and how the different equivalent structures are affected, finding that for some specific coupling ratios they are extremely robust.


2014 ◽  
Vol 14 (9&10) ◽  
pp. 777-789
Author(s):  
Morteza Rafiee ◽  
Abolfazl Bayat

We introduce a fully coherent way for directed transport of localized atoms in optical lattices by regularly performing phase shifts on the lattice potential during the free evolution of the system. This paves the way for realizing a possible cold atom quantum computer in which entangling gates operate by bringing two individual atoms in the proximity of each other and letting them to interact. The speed of our protocol is determined by the tunneling amplitudes of the atoms and thus is much faster than the speed of the dynamics resulted from superexchange interaction in spin chains. Our scheme is robust against possible imperfections and perhaps its main advantage is its simplicity where all of its requirements have been already achieved in recent experiments.


1994 ◽  
Vol 4 (8) ◽  
pp. 1151-1159 ◽  
Author(s):  
Makoto Idzumi ◽  
Tetsuji Tokihiro ◽  
Masao Arai

2019 ◽  
Vol 125 (1) ◽  
pp. 10008 ◽  
Author(s):  
Bat-el Friedman ◽  
Atanu Rajak ◽  
Emanuele G. Dalla Torre

Sign in / Sign up

Export Citation Format

Share Document