fabrication errors
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Qian Zhang ◽  
Jinbin Pan ◽  
Shulong Wang ◽  
Yongqian Du ◽  
Jieyu Wu

Facing the problems of ohmic loss and short propagation length, the application of plasmonic waveguides is limited. Here, a triangle hybrid plasmonic waveguide is introduced, where a cylinder silicon waveguide is separated from the triangle prism silver waveguide by a nanoscale silica gap. The process of constant optimization of waveguide structure is completed and simulation results indicate that the propagation length could reach a length of 510 μm, and the normalized mode area could reach 0.03 along with a high figure of merit 3150. This implies that longer propagation length could be simultaneously achieved along with relatively ultra-deep subwavelength mode confinement due to the hybridization between metallic plasmon polarization mode and silicon waveguide mode, compared with previous study. By an analysis of fabrication errors, it is confirmed that this waveguide is fairly stable over a wide error range. Additionally, the excellent performance of this is further proved by the comparison with other hybrid plasmonic waveguides. Our work is significant to manipulate light waves at sub-wavelength dimensions and enlarge the application fields, such as light detection and photoelectric sensors, which also benefit the improvement of the integration of optical devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2904
Author(s):  
Song Yue ◽  
Zhe Zhang ◽  
Kunpeng Zhang ◽  
Huifang Guo ◽  
Ran Wang ◽  
...  

Reflective imaging systems such as Cassegrain-type telescopes are widely utilized in astronomical observations. However, curved mirrors in traditional Cassegrain telescopes unavoidably make the imaging system bulky and costly. Recent developments in the field of metasurfaces provide an alternative way to construct optical systems, possessing the potential to make the whole system flat, compact and lightweight. In this work, we propose a design for a miniaturized Cassegrain telescope by replacing the curved primary and secondary mirrors with flat and ultrathin metasurfaces. The meta-atoms, consisting of SiO2 stripes on an Al film, provide high reflectance (>95%) and a complete phase coverage of 0~2π at the operational wavelength of 4 μm. The optical functionality of the metasurface Cassegrain telescope built with these meta-atoms was confirmed and studied with numerical simulations. Moreover, fabrication errors were mimicked by introducing random width errors to each meta-atom; their influence on the optical performance of the metasurface device was studied numerically. The concept of the metasurface Cassegrain telescope operating in the infrared wavelength range can be extended to terahertz (THz), microwave and even radio frequencies for real-world applications, where metasurfaces with a large aperture size are more easily obtained.


2021 ◽  
pp. 2150348
Author(s):  
Bowen Gong ◽  
Huiying Wen

In this paper, an enhanced polarization-independent two-layer five-port grating with covering layer is proposed. The rigorous coupled-wave analysis (RCWA) is used to predict grating parameters. In addition, the total efficiency of the polarization-independent five-port grating with covering layer can exceed 80% with the good uniformity of 1.97% for TE and TM polarization. The inherent coupling mechanism and the electric field energy distribution of the gratings are explained well under TE and TM polarization by the simplified mode method (SMM) and the finite element method (FEM). According to the reported five-port gratings, the proposed transmission five-port grating with a covering layer has good uniformity for TE and TM polarization. Moreover, the grating can be protected and the groove of the grating can be kept clean by adding a covering layer during the actual fabrication. At the same time, the fabrication errors of the two-layer five-port diffraction grating are further considered. Therefore, the numerically simulated five-port grating with covering layer has a wide application prospect in precision displacement measurement and holographic projection imaging.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adelin Patoux ◽  
Gonzague Agez ◽  
Christian Girard ◽  
Vincent Paillard ◽  
Peter R. Wiecha ◽  
...  

AbstractOptical metasurfaces have raised immense expectations as cheaper and lighter alternatives to bulk optical components. In recent years, novel components combining multiple optical functions have been proposed pushing further the level of requirement on the manufacturing precision of these objects. In this work, we study in details the influence of the most common fabrication errors on the optical response of a metasurface and quantitatively assess the tolerance to fabrication errors based on extensive numerical simulations. We illustrate these results with the design, fabrication and characterization of a silicon nanoresonator-based metasurface that operates as a beam deflector in the near-infrared range.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jan Riegelmeyer ◽  
Dan Wignall ◽  
Marta P. Estarellas ◽  
Irene D’Amico ◽  
Timothy P. Spiller

AbstractEntanglement is a crucial resource for quantum information processing, and so protocols to generate high-fidelity entangled states on various hardware platforms are in demand. While spin chains have been extensively studied to generate entanglement, graph structures also have such potential; however, only a few classes of graphs have been explored for this specific task. In this paper, we apply a particular coupling scheme involving two different coupling strengths to a graph of two interconnected $$3\times 3$$ 3 × 3 square graphs such that it effectively contains three defects. We show how this structure allows generation of a Bell state whose fidelity depends on the chosen coupling ratio. We apply partitioned graph theory in order to reduce the dimension of the graph and show that, using a reduced graph or a reduced chain, we can still simulate the same protocol with identical dynamics. Finally, we investigate how fabrication errors affect the entanglement generation protocol and how the different equivalent structures are affected, finding that for some specific coupling ratios they are extremely robust.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 393-401
Author(s):  
Raymond A. Wambold ◽  
Zhaoning Yu ◽  
Yuzhe Xiao ◽  
Benjamin Bachman ◽  
Gabriel Jaffe ◽  
...  

AbstractWe designed a nanoscale light extractor (NLE) for the efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy (NV) centers in bulk diamond. The NLE consists of a patterned silicon layer on diamond and requires no etching of the diamond surface. Our design process is based on adjoint optimization using broadband time-domain simulations and yields structures that are inherently robust to positioning and fabrication errors. Our NLE functions like a transmission antenna for the NV center, enhancing the optical power extracted from an NV center positioned 10 nm below the diamond surface by a factor of more than 35, and beaming the light into a ±30° cone in the far field. This approach to light extraction can be readily adapted to other solid-state color centers.


The development of IC integration technologies leads to an extensive use of memories and buffers in different memory intensive applications. Therefore, probability of occurrence of fault in every single read and writes operation is increased in Memory BIST (MBIST). There were many testing approaches that were developed for efficient testing and diagnosis of fault. However, all algorithms are not strengthened enough to detect all possible faults that may be present due to fabrication errors or environmental disturbance. Keeping this in mind and taking the possibility of development of efficient algorithm a hybrid memory testing algorithm is presented. To overcome those drawbacks, pipelining based MBIST designed to detect the all the types of memory faults by utilizing March-C testing algorithm. By introducing the Pipelining approach, majorly path delays are reducing. The proposed architecture designed and verified using Xilinx ISE environment under various testing methods with respect to the different category of memories. The simulation and synthesis results shows that the proposed method shows the enhanced performance with the hardware resource utilization and delay consumption compared to the conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document