coupling scheme
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 126)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Zhi Yao ◽  
Revathi Jambunathan ◽  
Yadong Zeng ◽  
Andrew Nonaka

We present a high-performance coupled electrodynamics–micromagnetics solver for full physical modeling of signals in microelectronic circuitry. The overall strategy couples a finite-difference time-domain approach for Maxwell’s equations to a magnetization model described by the Landau–Lifshitz–Gilbert equation. The algorithm is implemented in the Exascale Computing Project software framework, AMReX, which provides effective scalability on manycore and GPU-based supercomputing architectures. Furthermore, the code leverages ongoing developments of the Exascale Application Code, WarpX, which is primarily being developed for plasma wakefield accelerator modeling. Our temporal coupling scheme provides second-order accuracy in space and time by combining the integration steps for the magnetic field and magnetization into an iterative sub-step that includes a trapezoidal temporal discretization for the magnetization. The performance of the algorithm is demonstrated by the excellent scaling results on NERSC multicore and GPU systems, with a significant (59×) speedup on the GPU using a node-by-node comparison. We demonstrate the utility of our code by performing simulations of an electromagnetic waveguide and a magnetically tunable filter.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Edvinas Gvozdiovas ◽  
Povilas Račkauskas ◽  
Gediminas Juzeliūnas

We analyze a tripod atom light coupling scheme characterized by two dark states playing the role of quasi-spin states. It is demonstrated that by properly configuring the coupling laser fields, one can create a lattice with spin-dependent sub-wavelength barriers. This allows to flexibly alter the atomic motion ranging from atomic dynamics in the effective brick-wall type lattice to free motion of atoms in one dark state and a tight binding lattice with a twice smaller periodicity for atoms in the other dark state. Between the two regimes, the spectrum undergoes significant changes controlled by the laser fields. The tripod lattice can be produced using current experimental techniques. The use of the tripod scheme to create a lattice of degenerate dark states opens new possibilities for spin ordering and symmetry breaking.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012056
Author(s):  
Pawaphat Jaturaphagorn ◽  
Papichaya Chaisakul ◽  
Nattaporn Chattham ◽  
Pichet Limsuwan

Abstract Research on mid-IR silicon-based waveguides has recently received strong interest. Particularly, this paper focuses on one of the critical issues in micron-scale photonic integrated circuits, which is to efficiently couple a mid-IR LED (light emitting diode) light source to an external micron-scale waveguide. The optical coupling scheme is crucial for the exploitation of LED light sources in waveguide-based spectroscopic sensing applications. This paper reports optical coupling scheme between an LED mid-IR light source and a silicon rich silicon nitride (SiN) waveguide that could enable the use of LED-based light sources. Finally, the detection limit of the investigated device for carbon dioxide gas detection is calculated.


2021 ◽  
Vol 119 (19) ◽  
pp. 194001
Author(s):  
I. N. Moskalenko ◽  
I. S. Besedin ◽  
I. A. Simakov ◽  
A. V. Ustinov

2021 ◽  
Vol 87 (5) ◽  
Author(s):  
D.A. Kaltsas ◽  
G.N. Throumoulopoulos ◽  
P.J. Morrison

We present two generalized hybrid kinetic-Hall magnetohydrodynamics (MHD) models describing the interaction of a two-fluid bulk plasma, which consists of thermal ions and electrons, with energetic, suprathermal ion populations described by Vlasov dynamics. The dynamics of the thermal components are governed by standard fluid equations in the Hall MHD limit with the electron momentum equation providing an Ohm's law with Hall and electron pressure terms involving a gyrotropic electron pressure tensor. The coupling of the bulk, low-energy plasma with the energetic particle dynamics is accomplished through the current density (current coupling scheme; CCS) and the ion pressure tensor appearing in the momentum equation (pressure coupling scheme; PCS) in the first and the second model, respectively. The CCS is a generalization of two well-known models, because in the limit of vanishing energetic and thermal ion densities, we recover the standard Hall MHD and the hybrid kinetic-ions/fluid-electron model, respectively. This provides us with the capability to study in a continuous manner, the global impact of the energetic particles in a regime extending from vanishing to dominant energetic particle densities. The noncanonical Hamiltonian structures of the CCS and PCS, which can be exploited to study equilibrium and stability properties through the energy-Casimir variational principle, are identified. As a first application here, we derive a generalized Hall MHD Grad–Shafranov–Bernoulli system for translationally symmetric equilibria with anisotropic electron pressure and kinetic effects owing to the presence of energetic particles using the PCS.


2021 ◽  
Vol 6 (2) ◽  
pp. 31-38
Author(s):  
Duy Long Ta ◽  
Huy Hiep Nguyen ◽  
Tuan Khai Nguyen ◽  
Vinh Thanh Tran ◽  
Huu Tiep Nguyen

This paper presents a computational scheme using MCNP5 and COBRA-EN for coupling neutronics/thermal hydraulics calculation of a VVER-1000 fuel assembly. A master program was written using the PERL script language to build the corresponding inputs for the MCNP5 and COBRA-EN calculations and to manage the coupling scheme. The hexagonal coolant channels have been used in the thermal hydraulics model using CORBRA-EN to simplify the coupling scheme. The results of two successive iterations were compared with an assigned convergence criterion and the loop calculation can be broken when the convergence criterion is satisfied. Numerical calculation has been performed based on a UO2fuel assembly of the VVER-1000 reactor.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1021
Author(s):  
Arpita Koley ◽  
Santanu K. Maiti ◽  
Laura M. Pérez ◽  
Judith Helena Ojeda Silva ◽  
David Laroze

In this work, we perform a numerical study of magnetoresistance in a one-dimensional quantum heterostructure, where the change in electrical resistance is measured between parallel and antiparallel configurations of magnetic layers. This layered structure also incorporates a non-magnetic spacer, subjected to quasi-periodic potentials, which is centrally clamped between two ferromagnetic layers. The efficiency of the magnetoresistance is further tuned by injecting unpolarized light on top of the two sided magnetic layers. Modulating the characteristic properties of different layers, the value of magnetoresistance can be enhanced significantly. The site energies of the spacer is modified through the well-known Aubry–André and Harper (AAH) potential, and the hopping parameter of magnetic layers is renormalized due to light irradiation. We describe the Hamiltonian of the layered structure within a tight-binding (TB) framework and investigate the transport properties through this nanojunction following Green’s function formalism. The Floquet–Bloch (FB) anstaz within the minimal coupling scheme is introduced to incorporate the effect of light irradiation in TB Hamiltonian. Several interesting features of magnetotransport properties are represented considering the interplay between cosine modulated site energies of the central region and the hopping integral of the magnetic regions that are subjected to light irradiation. Finally, the effect of temperature on magnetoresistance is also investigated to make the model more realistic and suitable for device designing. Our analysis is purely a numerical one, and it leads to some fundamental prescriptions of obtaining enhanced magnetoresistance in multilayered systems.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4922
Author(s):  
Miroslav Georgiev ◽  
Hassan Chamati

We study the magnetic properties of the erbium based compounds, Na9[Er(W5O18)2] and [(Pc)Er{Pc{N(C4H9)2}8}]·/−, in the framework of an effective spin exchange model involving delocalized electrons occupying molecular orbitals. The calculations successfully reproduce the experimental data available in the literature for the magnetic spectrum, magnetization and molar susceptibility in dc and ac fields. Owing to their similar molecular geometry, the compounds’ magnetic behaviors are interpreted in terms of the same set of active orbitals and thus the same effective spin coupling scheme. For all three complexes, the model predicts a prompt change in the ground state from a Kramer’s doublet at zero fields to a fully polarized quartet one brought about by the action of an external magnetic field without Zeeman splitting. This alteration is attributed to the enhancement of the effect of orbital interactions over the spin exchange as the magnitude of the external magnetic field increases.


Sign in / Sign up

Export Citation Format

Share Document