Evaluation of exact quantum query complexities by semidefinite programming

2019 ◽  
Vol 18 (6) ◽  
Author(s):  
Kıvanç Uyanık
2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


Algorithmica ◽  
2013 ◽  
Vol 71 (4) ◽  
pp. 775-796 ◽  
Author(s):  
Ashley Montanaro ◽  
Richard Jozsa ◽  
Graeme Mitchison

2017 ◽  
Vol 28 (02) ◽  
pp. 185-194
Author(s):  
Stefan Arnold

We provide an exact quantum query algorithm that identifies uncorrupted codewords from a degree-d generalized Reed-Muller code of length qn over the finite field of size q. When d is constant, the algorithm needs 𝒪(nd-1) quantum queries, which is optimal. Classically, Ω(nd) queries are necessary to accomplish this task, even with constant probability of error admitted. Our work extends a result by Montanaro about learning multilinear polynomials.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 189
Author(s):  
Guoliang Xu ◽  
Daowen Qiu

We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum algorithm. Due to the second characterization, we construct a function F that maps any n-bit partial Boolean function to some integer, and if an n-bit partial Boolean function f depends on k bits and can be computed exactly by a 1-query quantum algorithm, then F(f) is non-positive. In addition, we show that the number of all n-bit partial Boolean functions that depend on k bits and can be computed exactly by a 1-query quantum algorithm is not bigger than an upper bound depending on n and k. Most importantly, the upper bound is far less than the number of all n-bit partial Boolean functions for all efficiently big n.


2021 ◽  
Vol 107 ◽  
pp. 67-105
Author(s):  
Elisabeth Gaar ◽  
Daniel Krenn ◽  
Susan Margulies ◽  
Angelika Wiegele

Sign in / Sign up

Export Citation Format

Share Document