received signal strength
Recently Published Documents


TOTAL DOCUMENTS

797
(FIVE YEARS 236)

H-INDEX

32
(FIVE YEARS 7)

Author(s):  
Zhiyong Yang ◽  
Jing Wen ◽  
Kaide Huang

AbstractThere is a wide demand for people counting and pedestrian flow monitoring in large public places such as scenic tourist areas, shopping malls, stations, squares, and so on. Based on the feedback from the pedestrian flow monitoring system, resources can be optimally allocated to maximize social and economic benefits. Moreover, trampling accidents can be avoided because pedestrian guidance is carried out in time. In order to meet these requirements, we propose a method of pedestrian flow monitoring based on the received signal strength (RSS) of wireless sensor networks. This method mainly utilizes the shadow attenuation effect of pedestrians on radio frequency (RF) signals of effective links. In this paper, a deployment structure of RF wireless sensor network is firstly designed to monitor the pedestrians. Secondly, the features are extracted from the wavelet decomposition of RSS signal series with a short time. Lastly, the support vector machine (SVM) algorithm is trained by an experimental data set to distinguish the instantaneous number of pedestrian passing through the monitoring point. In the case of dense and sparse indoor personnel density, the accuracy of the SVM model is 88.9% and 94.5%, respectively. In the outdoor environment, the accuracy of the SVM model is 92.9%. The experimental results show that this method can realize the high precision monitoring of the flow of people in the context of real-time pedestrian flow monitoring.


2021 ◽  
Author(s):  
Fangli Ma ◽  
Yang Xu ◽  
Peng Xu

Abstract In order to use the latitude and longitude coordinates for received signal strength difference (RSSD) localization, the errors of several spherical distance calculation methods and the error of arc length relative to string length were compared. The distance-calculation RSSD localization equations were established, including spherical accurate calculation RSSD, spherical approximate calculation RSSD, and normal cylindrical projection RSSD. And then, the optimization RSSD localization models based on geodetic coordinates and corresponding to the above equations were established, and the models were verified using the point by point search method with good convergence. The numerical results show there are a lot of weak localization areas for the RSSD localization networks lack of central stations with 4,5,6 stations. Among networks with central stations, there are only a small number of weak-localization areas for the concave 4 stations network, while there are no weak-localization areas for the networks composed of more stations. When the measurement errors and the additional losses of radio wave propagation are not considered, the localization errors of the spherical accurate model, the spherical approximate model and the equianglular projection model are very small, among which the second model has the shortest localization time. The localization errors of equidistance projection model and equal-area projection model are large, neither of which is suitable for the middle latitude and high latitude areas.


2021 ◽  
Author(s):  
Sander Bastiaens ◽  
Jens Mommerency ◽  
Kenneth Deprez ◽  
Wout Joseph ◽  
David Plets

2021 ◽  
Vol 17 (11) ◽  
pp. 155014772110539
Author(s):  
Satish R Jondhale ◽  
Amruta S Jondhale ◽  
Pallavi S Deshpande ◽  
Jaime Lloret

Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly tracking, emergency management, and so on. Trilateration-based localization using received signal strength measurements is widely used in wireless sensor network–based localization and tracking systems due to its simplicity and low computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localization error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural Network–based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, centroid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization performance as compared to trilateration, and Generalized Regression Neural Network algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wei Chen ◽  
ChenYu He ◽  
JianRong Lu ◽  
Kui Yan ◽  
Jin Liu ◽  
...  

In order to comprehensively improve the sensitivity of fire warning and effectively shorten the warning time, this paper proposes and implements an indoor distributed fire alarm system based on low power wide area network. The system is mainly composed of three parts: a multisensor acquisition node based on LoRa technology, a distributed edge gateway, and a remote user monitoring system. The multisensor collection node obtains environmental parameters such as indoor temperature, smoke concentration, and air quality and then transmits the sensing data to edge gateway by LoRa after preprocessing. The edge gateway is based on an embedded Linux platform and is deployed in distributed state to collect and store data from multiple collection nodes. Besides, edge gateway forwards valid data to the remote user monitoring system by standard MQTT protocol. The user monitoring system displays current deployment area parameters to users in real time and provides early warning prompts based on relevant preset indicators to help the administrator make more accurate decisions on corresponding measures. The system has been deployed and tested in Nanjing Institute of Technology. By sensor calibration experiments, LoRa communication experiments, and system tests in different environments, the experimental results show that the average received signal strength in a small interference space is -104.12 dBm, and the average received signal strength in a noisy signal environment is -57.5 dBm. By setting the optimal transmitting power for each distance, the packet receiving rate can reach more than 95%, and the alarm accuracy can reach 100% under premise of ensuring the lowest power consumption. Finally, this paper conducts a comprehensive performance analysis on the wireless communication performance of environmental collection nodes, multisensor data fusion algorithm, distributed LoRa edge gateway deployment performance, and remote system early warning accuracy.


2021 ◽  
Vol 60 (10) ◽  
Author(s):  
Zhong Zheng ◽  
Xiaoting Wang ◽  
Shan Luan ◽  
Hanyu Zheng ◽  
Minglong Pu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document