multilinear polynomials
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 70 (1) ◽  
pp. 13-30
Author(s):  
Gerwald Lichtenberg ◽  
Georg Pangalos ◽  
Carlos Cateriano Yáñez ◽  
Aline Luxa ◽  
Niklas Jöres ◽  
...  

Abstract The paper introduces a subclass of nonlinear differential-algebraic models of interest for applications. By restricting the nonlinearities to multilinear polynomials, it is possible to use modern tensor methods. This opens the door to new approximation and complexity reduction methods for large scale systems with relevant nonlinear behavior. The modeling procedures including composition, decomposition, normalization, and multilinearization steps are shown by an example of a local energy system with a nonlinear electrolyzer, a linear buck converter and a PI controller with saturation.


Author(s):  
Holger Sambale ◽  
Arthur Sinulis

AbstractWe present concentration inequalities on the multislice which are based on (modified) log-Sobolev inequalities. This includes bounds for convex functions and multilinear polynomials. As an application, we show concentration results for the triangle count in the G(n, M) Erdős–Rényi model resembling known bounds in the G(n, p) case. Moreover, we give a proof of Talagrand’s convex distance inequality for the multislice. Interpreting the multislice in a sampling without replacement context, we furthermore present concentration results for n out of N sampling without replacement. Based on a bounded difference inequality involving the finite-sampling correction factor $$1 - (n / N)$$ 1 - ( n / N ) , we present an easy proof of Serfling’s inequality with a slightly worse factor in the exponent, as well as a sub-Gaussian right tail for the Kolmogorov distance between the empirical measure and the true distribution of the sample.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2021 ◽  
Vol 29 (2) ◽  
pp. 183-186
Author(s):  
Thiago Castilho de Mello

Abstract We describe the images of multilinear polynomials of arbitrary degree evaluated on the 3×3 upper triangular matrix algebra over an infinite field.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Albrecht Böttcher ◽  
Lenny Fukshansky

Sign in / Sign up

Export Citation Format

Share Document