On the distribution of typical shortest-path lengths in connected random geometric graphs

2012 ◽  
Vol 71 (1-2) ◽  
pp. 199-220 ◽  
Author(s):  
D. Neuhäuser ◽  
C. Hirsch ◽  
C. Gloaguen ◽  
V. Schmidt
2015 ◽  
Vol 47 (02) ◽  
pp. 328-354
Author(s):  
C. Hirsch ◽  
D. Neuhäuser ◽  
C. Gloaguen ◽  
V. Schmidt

We consider Euclidean first passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth of shortest-path lengths between two (end) points of the path does not admit a linear upper bound. Our linear growth property implies that the probability of this event tends to zero sub-exponentially fast if the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide class of stationary and isotropic random geometric graphs, our linear growth property implies a shape theorem for the Euclidean first passage model defined by such random geometric graphs. Finally, this shape theorem can be used to investigate a problem which is considered in structural analysis of fixed-access telecommunication networks, where we determine the limiting distribution of the length of the longest branch in the shortest-path tree extracted from a typical segment system if the intensity of network stations converges to 0.


2015 ◽  
Vol 47 (2) ◽  
pp. 328-354 ◽  
Author(s):  
C. Hirsch ◽  
D. Neuhäuser ◽  
C. Gloaguen ◽  
V. Schmidt

We consider Euclidean first passage percolation on a large family of connected random geometric graphs in the d-dimensional Euclidean space encompassing various well-known models from stochastic geometry. In particular, we establish a strong linear growth property for shortest-path lengths on random geometric graphs which are generated by point processes. We consider the event that the growth of shortest-path lengths between two (end) points of the path does not admit a linear upper bound. Our linear growth property implies that the probability of this event tends to zero sub-exponentially fast if the direct (Euclidean) distance between the endpoints tends to infinity. Besides, for a wide class of stationary and isotropic random geometric graphs, our linear growth property implies a shape theorem for the Euclidean first passage model defined by such random geometric graphs. Finally, this shape theorem can be used to investigate a problem which is considered in structural analysis of fixed-access telecommunication networks, where we determine the limiting distribution of the length of the longest branch in the shortest-path tree extracted from a typical segment system if the intensity of network stations converges to 0.


2015 ◽  
Vol 107 ◽  
pp. 122-130 ◽  
Author(s):  
Christian Hirsch ◽  
David Neuhäuser ◽  
Catherine Gloaguen ◽  
Volker Schmidt

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 976
Author(s):  
R. Aguilar-Sánchez ◽  
J. Méndez-Bermúdez ◽  
José Rodríguez ◽  
José Sigarreta

We perform a detailed computational study of the recently introduced Sombor indices on random networks. Specifically, we apply Sombor indices on three models of random networks: Erdös-Rényi networks, random geometric graphs, and bipartite random networks. Within a statistical random matrix theory approach, we show that the average values of Sombor indices, normalized to the order of the network, scale with the average degree. Moreover, we discuss the application of average Sombor indices as complexity measures of random networks and, as a consequence, we show that selected normalized Sombor indices are highly correlated with the Shannon entropy of the eigenvectors of the adjacency matrix.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Michael Wilsher ◽  
Carl P. Dettmann ◽  
Ayalvadi Ganesh

2000 ◽  
Vol 9 (6) ◽  
pp. 489-511 ◽  
Author(s):  
JOSEP DÍAZ ◽  
MATHEW D. PENROSE ◽  
JORDI PETIT ◽  
MARÍA SERNA

This work deals with convergence theorems and bounds on the cost of several layout measures for lattice graphs, random lattice graphs and sparse random geometric graphs. Specifically, we consider the following problems: Minimum Linear Arrangement, Cutwidth, Sum Cut, Vertex Separation, Edge Bisection and Vertex Bisection. For full square lattices, we give optimal layouts for the problems still open. For arbitrary lattice graphs, we present best possible bounds disregarding a constant factor. We apply percolation theory to the study of lattice graphs in a probabilistic setting. In particular, we deal with the subcritical regime that this class of graphs exhibits and characterize the behaviour of several layout measures in this space of probability. We extend the results on random lattice graphs to random geometric graphs, which are graphs whose nodes are spread at random in the unit square and whose edges connect pairs of points which are within a given distance. We also characterize the behaviour of several layout measures on random geometric graphs in their subcritical regime. Our main results are convergence theorems that can be viewed as an analogue of the Beardwood, Halton and Hammersley theorem for the Euclidean TSP on random points in the unit square.


2017 ◽  
Vol 6 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Carl P Dettmann ◽  
Georgie Knight

2019 ◽  
Author(s):  
Marcelo Benedito ◽  
Lehilton Pedrosa ◽  
Hugo Rosado

In the Cable-Trench Problem (CTP), the objective is to find a rooted spanning tree of a weighted graph that minimizes the length of the tree, scaled by a non-negative factor , plus the sum of all shortest-path lengths from the root, scaled by another non-negative factor. This is an intermediate optimization problem between the Single-Destination Shortest Path Problem and the Minimum Spanning Tree Problem. In this extended abstract, we consider the Generalized CTP (GCTP), in which some vertices need not be connected to the root, but may serve as cost-saving merging points; this variant also generalizes the Steiner Tree Problem. We present an 8.599-approximation algorithm for GCTP. Before this paper, no constant approximation for the standard CTP was known.


Author(s):  
A. A. Heidari ◽  
M. R. Delavar

In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.


Sign in / Sign up

Export Citation Format

Share Document