The Critical Case of the Cramer-Lundberg Theorem on the Asymptotic Tail Behavior of the Maximum of a Negative Drift Random Walk

2005 ◽  
Vol 46 (6) ◽  
pp. 1077-1081 ◽  
Author(s):  
D. A. Korshunov
2018 ◽  
Vol 55 (2) ◽  
pp. 627-651 ◽  
Author(s):  
Fiona Sloothaak ◽  
Vitali Wachtel ◽  
Bert Zwart

Abstract We study the asymptotic tail behavior of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with exponent -½, where the impact of the boundary is captured by the slowly varying function. Yet, the moving boundary may have a stronger effect when the tail is considered at a time close to the return point of the random walk bridge, leading to a possible phase transition depending on the order of the distance between zero and the moving boundary.


1983 ◽  
Vol 11 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Michael J. Klass
Keyword(s):  

2005 ◽  
Vol 42 (02) ◽  
pp. 426-445
Author(s):  
Raymond Brummelhuis ◽  
Dominique Guégan

We study the asymptotic tail behavior of the conditional probability distributions of r t+k and r t+1+⋯+r t+k when (r t ) t∈ℕ is a GARCH(1, 1) process. As an application, we examine the relation between the extreme lower quantiles of these random variables.


2005 ◽  
Vol 42 (01) ◽  
pp. 153-162 ◽  
Author(s):  
Christian Y. Robert

Let (Y n , N n ) n≥1 be independent and identically distributed bivariate random variables such that the N n are positive with finite mean ν and the Y n have a common heavy-tailed distribution F. We consider the process (Z n ) n≥1 defined by Z n = Y n - Σ n-1, where It is shown that the probability that the maximum M = max n≥1 Z n exceeds x is approximately as x → ∞, where F' := 1 - F. Then we study the integrated tail of the maximum of a random walk with long-tailed increments and negative drift over the interval [0, σ], defined by some stopping time σ, in the case in which the randomly stopped sum is negative. Finally, an application to risk theory is considered.


1978 ◽  
Vol 15 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Anthony G. Pakes

In a recent paper Green (1976) obtained some conditional limit theorems for the absorption time of left-continuous random walk. His methods require that in the driftless case the increment distribution has exponentially decreasing tails and that the same is true for a transformed distribution in the case of negative drift.Here we take a different approach which will produce Green's results under minimal conditions. Limit theorems are given for the maximum as the initial position of the random walk tends to infinity.


Sign in / Sign up

Export Citation Format

Share Document