finite variance
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
pp. 013302
Author(s):  
Jean-Marc Luck

Abstract We consider non-Hermitian PT -symmetric tight-binding chains where gain/loss optical potentials of equal magnitudes ±iγ are arbitrarily distributed over all sites. The main focus is on the threshold γ c beyond which PT -symmetry is broken. This threshold generically falls off as a power of the chain length, whose exponent depends on the configuration of optical potentials, ranging between 1 (for balanced periodic chains) and 2 (for unbalanced periodic chains, where each half of the chain experiences a non-zero mean potential). For random sequences of optical potentials with zero average and finite variance, the threshold is itself a random variable, whose mean value decays with exponent 3/2 and whose fluctuations have a universal distribution. The chains yielding the most robust PT -symmetric phase, i.e. the highest threshold at fixed chain length, are obtained by exact enumeration up to 48 sites. This optimal threshold exhibits an irregular dependence on the chain length, presumably decaying asymptotically with exponent 1, up to logarithmic corrections.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022107
Author(s):  
O Rusakov ◽  
Yu Yakubovich

Abstract Weconsider a PSI-process, that is a sequence of random variables (&), i = 0.1,…, which is subordinated by a continuous-time non-decreasing integer-valued process N(t): <K0 = ÇN(ty Our main example is when /V(t) itself is obtained as a subordination of the standard Poisson process 77(s) by a non-decreasing Lévy process S(t): N(t) = 77(S(t)).The values (&)one interprets as random claims, while their accumulated intensity S(t) is itself random. We show that in this case the process 7V(t) is a compound Poisson process of the stuttering type and its rate depends just on the value of theLaplace exponent of S(t) at 1. Under the assumption that the driven sequence (&) consists of i.i.d. random variables with finite variance we calculate a correlation function of the constructed PSI-process. Finally, we show that properly rescaled sums of such processes converge to the Ornstein-Uhlenbeck process in the Skorokhod space. We suppose that the results stated in the paper mightbe interesting for theorists and practitioners in insurance, in particular, for solution of reinsurance tasks.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1529
Author(s):  
Benjamin Guedj ◽  
Louis Pujol

“No free lunch” results state the impossibility of obtaining meaningful bounds on the error of a learning algorithm without prior assumptions and modelling, which is more or less realistic for a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails), others are “cheap” (simply finite variance). As it is well known, the more you pay, the more you get: in other words, the most expensive models yield the more interesting bounds. Recent advances in robust statistics have investigated procedures to obtain tight bounds while keeping the cost of assumptions minimal. The present paper explores and exhibits what the limits are for obtaining tight probably approximately correct (PAC)-Bayes bounds in a robust setting for cheap models.


2021 ◽  
pp. 611-637
Author(s):  
James Davidson

This chapter reviews the theory of continuous-time stochastic processes, covering the concepts of adaptation, Lévy processes, diffusions, martingales, and Markov processes. Brownian motion is studied as the most important case, with properties that include the reflection principle and the strong Markov property. The technique of Skorokhod embedding is introduced, providing novel proofs of the central limit theorem and the law of the iterated logarithm. The family of processes derived from Brownian motion is reviewed and in the final section it is shown that a continuous process having finite variance and independent increments is Brownian motion.


Author(s):  
Giovanni Barbarino ◽  
Vanni Noferini

We study the empirical spectral distribution (ESD) for complex [Formula: see text] matrix polynomials of degree [Formula: see text] under relatively mild assumptions on the underlying distributions, thus highlighting universality phenomena. In particular, we assume that the entries of each matrix coefficient of the matrix polynomial have mean zero and finite variance, potentially allowing for distinct distributions for entries of distinct coefficients. We derive the almost sure limit of the ESD in two distinct scenarios: (1) [Formula: see text] with [Formula: see text] constant and (2) [Formula: see text] with [Formula: see text] bounded by [Formula: see text] for some [Formula: see text]; the second result additionally requires that the underlying distributions are continuous and uniformly bounded. Our results are universal in the sense that they depend on the choice of the variances and possibly on [Formula: see text] (if it is kept constant), but not on the underlying distributions. The results can be specialized to specific models by fixing the variances, thus obtaining matrix polynomial analogues of results known for special classes of scalar polynomials, such as Kac, Weyl, elliptic and hyperbolic polynomials.


Author(s):  
Wojciech Żuławiński ◽  
Agnieszka Wyłomańska

AbstractThe periodic behavior of real data can be manifested in the time series or in its characteristics. One of the characteristics that often manifests the periodic behavior is the sample autocovariance function. In this case, the periodically correlated (PC) behavior is considered. One of the main models that exhibits PC property is the periodic autoregressive (PARMA) model that is considered as the generalization of the classical autoregressive moving average (ARMA) process. However, when one considers the real data, practically the observed trajectory corresponds to the “pure” model with the additional noise which is a result of the noise of the measurement device or other external forces. Thus, in this paper we consider the model that is a sum of the periodic autoregressive (PAR) time series and the additive noise with finite-variance distribution. We present the main properties of the considered model indicating its PC property. One of the main goals of this paper is to introduce the new estimation method for the considered model’s parameters. The novel algorithm takes under consideration the additive noise in the model and can be considered as the modification of the classical Yule–Walker algorithm that utilizes the autocovariance function. Here, we propose two versions of the new method, namely the classical and the robust ones. The effectiveness of the proposed methodology is verified by Monte Carlo simulations. The comparison with the classical Yule–Walker method is presented. The approach proposed in this paper is universal and can be applied to any finite-variance models with the additive noise.


2021 ◽  
Vol 36 (3) ◽  
pp. 443-461
Author(s):  
Qi-meng Liu ◽  
Gui-li Liao ◽  
Rong-mao Zhang

AbstractBased on the quantile regression, we extend Koenker and Xiao (2004) and Ling and McAleer (2004)’s works from finite-variance innovations to infinite-variance innovations. A robust t-ratio statistic to test for unit-root and a re-sampling method to approximate the critical values of the t-ratio statistic are proposed in this paper. It is shown that the limit distribution of the statistic is a functional of stable processes and a Brownian bridge. The finite sample studies show that the proposed t-ratio test always performs significantly better than the conventional unit-root tests based on least squares procedure, such as the Augmented Dick Fuller (ADF) and Philliphs-Perron (PP) test, in the sense of power and size when infinite-variance disturbances exist. Also, quantile Kolmogorov-Smirnov (QKS) statistic and quantile Cramer-von Mises (QCM) statistic are considered, but the finite sample studies show that they perform poor in power and size, respectively. An application to the Consumer Price Index for nine countries is also presented.


2021 ◽  
Vol 9 (3) ◽  
pp. 539-576
Author(s):  
David Jon Furbish ◽  
Joshua J. Roering ◽  
Tyler H. Doane ◽  
Danica L. Roth ◽  
Sarah G. W. Williams ◽  
...  

Abstract. We describe the probabilistic physics of rarefied particle motions and deposition on rough hillslope surfaces. The particle energy balance involves gravitational heating with conversion of potential to kinetic energy, frictional cooling associated with particle–surface collisions, and an apparent heating associated with preferential deposition of low-energy particles. Deposition probabilistically occurs with frictional cooling in relation to the distribution of particle energy states whose spatial evolution is described by a Fokker–Planck equation. The Kirkby number Ki – defined as the ratio of gravitational heating to frictional cooling – sets the basic deposition behavior and the form of the probability distribution fr(r) of particle travel distances r, a generalized Pareto distribution. The shape and scale parameters of the distribution are well-defined mechanically. For isothermal conditions where frictional cooling matches gravitational heating plus the apparent heating due to deposition, the distribution fr(r) is exponential. With non-isothermal conditions and small Ki this distribution is bounded and represents rapid thermal collapse. With increasing Ki the distribution fr(r) becomes heavy-tailed and represents net particle heating. It may possess a finite mean and finite variance, or the mean and variance may be undefined with sufficiently large Ki. The formulation provides key elements of the entrainment forms of the particle flux and the Exner equation, and it clarifies the mechanisms of particle-size sorting on large talus and scree slopes. Namely, with conversion of translational to rotational kinetic energy, large spinning particles are less likely to be stopped by collisional friction than are small or angular particles for the same surface roughness.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Ajay Jasra ◽  
Kody J. H. Law ◽  
Deng Lu

AbstractWe consider the problem of estimating a parameter $$\theta \in \Theta \subseteq {\mathbb {R}}^{d_{\theta }}$$ θ ∈ Θ ⊆ R d θ associated with a Bayesian inverse problem. Typically one must resort to a numerical approximation of gradient of the log-likelihood and also adopt a discretization of the problem in space and/or time. We develop a new methodology to unbiasedly estimate the gradient of the log-likelihood with respect to the unknown parameter, i.e. the expectation of the estimate has no discretization bias. Such a property is not only useful for estimation in terms of the original stochastic model of interest, but can be used in stochastic gradient algorithms which benefit from unbiased estimates. Under appropriate assumptions, we prove that our estimator is not only unbiased but of finite variance. In addition, when implemented on a single processor, we show that the cost to achieve a given level of error is comparable to multilevel Monte Carlo methods, both practically and theoretically. However, the new algorithm is highly amenable to parallel computation.


2020 ◽  
Vol 54 (2) ◽  
pp. 024001
Author(s):  
Katarzyna Maraj ◽  
Dawid Szarek ◽  
Grzegorz Sikora ◽  
Agnieszka Wyłomańska
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document