scholarly journals Multiperiod conditional distribution functions for conditionally normal GARCH(1, 1) models

2005 ◽  
Vol 42 (02) ◽  
pp. 426-445
Author(s):  
Raymond Brummelhuis ◽  
Dominique Guégan

We study the asymptotic tail behavior of the conditional probability distributions of r t+k and r t+1+⋯+r t+k when (r t ) t∈ℕ is a GARCH(1, 1) process. As an application, we examine the relation between the extreme lower quantiles of these random variables.


2005 ◽  
Vol 42 (2) ◽  
pp. 426-445 ◽  
Author(s):  
Raymond Brummelhuis ◽  
Dominique Guégan

We study the asymptotic tail behavior of the conditional probability distributions of rt+k and rt+1+⋯+rt+k when (rt)t∈ℕ is a GARCH(1, 1) process. As an application, we examine the relation between the extreme lower quantiles of these random variables.



2006 ◽  
Vol 43 (02) ◽  
pp. 587-593 ◽  
Author(s):  
Jaap Geluk ◽  
Kai W. Ng

Consider a sequence {X k , k ≥ 1} of random variables on (−∞, ∞). Results on the asymptotic tail probabilities of the quantities , and S (n) = max0 ≤ k ≤ n S k , with X 0 = 0 and n ≥ 1, are well known in the case where the random variables are independent with a heavy-tailed (subexponential) distribution. In this paper we investigate the validity of these results under more general assumptions. We consider extensions under the assumptions of having long-tailed distributions (the class L) and having the class D ∩ L, where D is the class of distribution functions with dominatedly varying tails. Some results are also given in the case where X k , k ≥ 1, are not necessarily identically distributed and/or independent.



2006 ◽  
Vol 43 (2) ◽  
pp. 587-593 ◽  
Author(s):  
Jaap Geluk ◽  
Kai W. Ng

Consider a sequence {Xk, k ≥ 1} of random variables on (−∞, ∞). Results on the asymptotic tail probabilities of the quantities , and S(n) = max0 ≤ k ≤ nSk, with X0 = 0 and n ≥ 1, are well known in the case where the random variables are independent with a heavy-tailed (subexponential) distribution. In this paper we investigate the validity of these results under more general assumptions. We consider extensions under the assumptions of having long-tailed distributions (the class L) and having the class D ∩ L, where D is the class of distribution functions with dominatedly varying tails. Some results are also given in the case where Xk, k ≥ 1, are not necessarily identically distributed and/or independent.



2008 ◽  
Vol 45 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Bangwon Ko ◽  
Qihe Tang

In this paper we study the asymptotic tail probabilities of sums of subexponential, nonnegative random variables, which are dependent according to certain general structures with tail independence. The results show that the subexponentiality of the summands eliminates the impact of the dependence on the tail behavior of the sums.



2020 ◽  
Vol 17 (3) ◽  
pp. 0889
Author(s):  
Ahmed AL-Adilee ◽  
Zainalabideen Samad ◽  
Samer Al-Shibley

               Copulas are simply equivalent structures to joint distribution functions. Then, we propose modified structures that depend on classical probability space and concepts with respect to copulas. Copulas have been presented in equivalent probability measure forms to the classical forms in order to examine any possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some probabilistic constructions have been shown within independent, and conditional probability concepts. A Bay's probability relation and its properties were discussed with respect to copulas. Moreover, an extension of multivariate constructions of each probabilistic copula has been presented. Finally, we have shown some examples that explain each relation of copula in terms of probability space instead of distribution functions.



2008 ◽  
Vol 45 (01) ◽  
pp. 85-94 ◽  
Author(s):  
Bangwon Ko ◽  
Qihe Tang

In this paper we study the asymptotic tail probabilities of sums of subexponential, nonnegative random variables, which are dependent according to certain general structures with tail independence. The results show that the subexponentiality of the summands eliminates the impact of the dependence on the tail behavior of the sums.



2020 ◽  
Vol 57 (3) ◽  
pp. 760-774
Author(s):  
Claudia Klüppelberg ◽  
Miriam Isabel Seifert

AbstractFor independent exponentially distributed random variables $X_i$ , $i\in {\mathcal{N}}$ , with distinct rates ${\lambda}_i$ we consider sums $\sum_{i\in\mathcal{A}} X_i$ for $\mathcal{A}\subseteq {\mathcal{N}}$ which follow generalized exponential mixture distributions. We provide novel explicit results on the conditional distribution of the total sum $\sum_{i\in {\mathcal{N}}}X_i$ given that a subset sum $\sum_{j\in \mathcal{A}}X_j$ exceeds a certain threshold value $t>0$ , and vice versa. Moreover, we investigate the characteristic tail behavior of these conditional distributions for $t\to\infty$ . Finally, we illustrate how our probabilistic results can be applied in practice by providing examples from both reliability theory and risk management.



Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.



Sign in / Sign up

Export Citation Format

Share Document