Tail behavior of supremum of a random walk when Cramér’s condition fails

2013 ◽  
Vol 9 (2) ◽  
pp. 431-453 ◽  
Author(s):  
Changjun Yu ◽  
Yuebao Wang
1996 ◽  
Vol 28 (1) ◽  
pp. 207-226 ◽  
Author(s):  
J. Bertoin ◽  
R. A. Doney

We consider a real-valued random walk S which drifts to –∞ and is such that E(exp θS1) < ∞ for some θ > 0, but for which Cramér's condition fails. We investigate the asymptotic tail behaviour of the distributions of the all time maximum, the upwards and downwards first passage times and the last passage times. As an application, we obtain new limit theorems for certain conditional laws.


2009 ◽  
Vol 46 (2) ◽  
pp. 559-570 ◽  
Author(s):  
Xuemiao Ha ◽  
Qihe Tang ◽  
Li Wei

In this paper we study the tail behavior of the maximum exceedance of a sequence of independent and identically distributed random variables over a random walk. For both light-tailed and heavy-tailed cases, we derive a precise asymptotic formula, which extends and unifies some existing results in the recent literature of applied probability.


2018 ◽  
Vol 55 (2) ◽  
pp. 627-651 ◽  
Author(s):  
Fiona Sloothaak ◽  
Vitali Wachtel ◽  
Bert Zwart

Abstract We study the asymptotic tail behavior of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with exponent -½, where the impact of the boundary is captured by the slowly varying function. Yet, the moving boundary may have a stronger effect when the tail is considered at a time close to the return point of the random walk bridge, leading to a possible phase transition depending on the order of the distance between zero and the moving boundary.


2013 ◽  
Vol 41 (6) ◽  
pp. 3786-3878 ◽  
Author(s):  
Elie Aïdékon ◽  
Yueyun Hu ◽  
Olivier Zindy

2009 ◽  
Vol 46 (02) ◽  
pp. 559-570 ◽  
Author(s):  
Xuemiao Ha ◽  
Qihe Tang ◽  
Li Wei

In this paper we study the tail behavior of the maximum exceedance of a sequence of independent and identically distributed random variables over a random walk. For both light-tailed and heavy-tailed cases, we derive a precise asymptotic formula, which extends and unifies some existing results in the recent literature of applied probability.


2008 ◽  
Vol 40 (01) ◽  
pp. 206-228 ◽  
Author(s):  
Alex Iksanov ◽  
Martin Möhle

LetS0:= 0 andSk:=ξ1+ ··· +ξkfork∈ ℕ := {1, 2, …}, where {ξk:k∈ ℕ} are independent copies of a random variableξwith values in ℕ and distributionpk:= P{ξ=k},k∈ ℕ. We interpret the random walk {Sk:k= 0, 1, 2, …} as a particle jumping to the right through integer positions. Fixn∈ ℕ and modify the process by requiring that the particle is bumped back to its current state each time a jump would bring the particle to a state larger than or equal ton. This constraint defines an increasing Markov chain {Rk(n):k= 0, 1, 2, …} which never reaches the staten. We call this process a random walk with barriern. LetMndenote the number of jumps of the random walk with barriern. This paper focuses on the asymptotics ofMnasntends to ∞. A key observation is that, underp1&gt; 0, {Mn:n∈ ℕ} satisfies the distributional recursionM1= 0 andforn= 2, 3, …, whereInis independent ofM2, …,Mn−1with distribution P{In=k} =pk/ (p1+ ··· +pn−1),k∈ {1, …,n− 1}. Depending on the tail behavior of the distribution ofξ, several scalings forMnand corresponding limiting distributions come into play, including stable distributions and distributions of exponential integrals of subordinators. The methods used in this paper are mainly probabilistic. The key tool is to compare (couple) the number of jumps,Mn, with the first time,Nn, when the unrestricted random walk {Sk:k= 0, 1, …} reaches a state larger than or equal ton. The results are applied to derive the asymptotics of the number of collision events (that take place until there is just a single block) forβ(a,b)-coalescent processes with parameters 0 &lt;a&lt; 2 andb= 1.


2008 ◽  
Vol 40 (1) ◽  
pp. 206-228 ◽  
Author(s):  
Alex Iksanov ◽  
Martin Möhle

Let S0 := 0 and Sk := ξ1 + ··· + ξk for k ∈ ℕ := {1, 2, …}, where {ξk : k ∈ ℕ} are independent copies of a random variable ξ with values in ℕ and distribution pk := P{ξ = k}, k ∈ ℕ. We interpret the random walk {Sk : k = 0, 1, 2, …} as a particle jumping to the right through integer positions. Fix n ∈ ℕ and modify the process by requiring that the particle is bumped back to its current state each time a jump would bring the particle to a state larger than or equal to n. This constraint defines an increasing Markov chain {Rk(n) : k = 0, 1, 2, …} which never reaches the state n. We call this process a random walk with barrier n. Let Mn denote the number of jumps of the random walk with barrier n. This paper focuses on the asymptotics of Mn as n tends to ∞. A key observation is that, under p1 > 0, {Mn : n ∈ ℕ} satisfies the distributional recursion M1 = 0 and for n = 2, 3, …, where In is independent of M2, …, Mn−1 with distribution P{In = k} = pk / (p1 + ··· + pn−1), k ∈ {1, …, n − 1}. Depending on the tail behavior of the distribution of ξ, several scalings for Mn and corresponding limiting distributions come into play, including stable distributions and distributions of exponential integrals of subordinators. The methods used in this paper are mainly probabilistic. The key tool is to compare (couple) the number of jumps, Mn, with the first time, Nn, when the unrestricted random walk {Sk : k = 0, 1, …} reaches a state larger than or equal to n. The results are applied to derive the asymptotics of the number of collision events (that take place until there is just a single block) for β(a, b)-coalescent processes with parameters 0 < a < 2 and b = 1.


Sign in / Sign up

Export Citation Format

Share Document