An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter

2020 ◽  
Vol 23 (2) ◽  
pp. 319-353
Author(s):  
Kohei Chiba
2009 ◽  
Vol 09 (03) ◽  
pp. 423-435 ◽  
Author(s):  
TYRONE DUNCAN ◽  
DAVID NUALART

In this paper we establish the existence of pathwise solutions and the uniqueness in law for multidimensional stochastic differential equations driven by a multi-dimensional fractional Brownian motion with Hurst parameter H > 1/2.


Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1695-1700
Author(s):  
Zhi Li

In this paper, we are concerned with a class of stochastic differential equations driven by fractional Brownian motion with Hurst parameter 1/2 < H < 1, and a discontinuous drift. By approximation arguments and a comparison theorem, we prove the existence of solutions to this kind of equations under the linear growth condition.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 243-263 ◽  
Author(s):  
MIREIA BESALÚ ◽  
DAVID NUALART

In this paper we establish precise estimates for the supremum norm for the solution of a dynamical system driven by a Hölder continuous function of order between ⅓ and ½ using the techniques of fractional calculus. As an application we deduce the existence of moments for the solutions to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(⅓, ½) and we obtain an estimate for the supremum norm of the Malliavin derivative.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenyi Pei ◽  
Zhenzhong Zhang

In this paper, the exponential stability of stochastic differential equations driven by multiplicative fractional Brownian motion (fBm) with Markovian switching is investigated. The quasi-linear cases with the Hurst parameter H ∈ (1/2, 1) and linear cases with H ∈ (0, 1/2) and H ∈ (1/2, 1) are all studied in this work. An example is presented as a demonstration.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


Sign in / Sign up

Export Citation Format

Share Document