Statistical Inference for Stochastic Processes
Latest Publications


TOTAL DOCUMENTS

316
(FIVE YEARS 67)

H-INDEX

18
(FIVE YEARS 1)

Published By Springer-Verlag

1572-9311, 1387-0874

Author(s):  
Katerina Papagiannouli

AbstractWe suppose that a Lévy process is observed at discrete time points. Starting from an asymptotically minimax family of estimators for the continuous part of the Lévy Khinchine characteristics, i.e., the covariance, we derive a data-driven parameter choice for the frequency of estimating the covariance. We investigate a Lepskiĭ-type stopping rule for the adaptive procedure. Consequently, we use a balancing principle for the best possible data-driven parameter. The adaptive estimator achieves almost the optimal rate. Numerical experiments with the proposed selection rule are also presented.


Author(s):  
Sigrunn H. Sørbye ◽  
Pedro G. Nicolau ◽  
Håvard Rue

AbstractThe class of autoregressive (AR) processes is extensively used to model temporal dependence in observed time series. Such models are easily available and routinely fitted using freely available statistical software like . A potential problem is that commonly applied estimators for the coefficients of AR processes are severely biased when the time series are short. This paper studies the finite-sample properties of well-known estimators for the coefficients of stationary AR(1) and AR(2) processes and provides bias-corrected versions of these estimators which are quick and easy to apply. The new estimators are constructed by modeling the relationship between the true and originally estimated AR coefficients using weighted orthogonal polynomial regression, taking the sampling distribution of the original estimators into account. The finite-sample distributions of the new bias-corrected estimators are approximated using transformations of skew-normal densities, combined with a Gaussian copula approximation in the AR(2) case. The properties of the new estimators are demonstrated by simulations and in the analysis of a real ecological data set. The estimators are easily available in our accompanying -package for AR(1) and AR(2) processes of length 10–50, both giving bias-corrected coefficient estimates and corresponding confidence intervals.


Author(s):  
O. V. Chernoyarov ◽  
S. Dachian ◽  
C. Farinetto ◽  
Yu. A. Kutoyants

Author(s):  
Valentin Courgeau ◽  
Almut E. D. Veraart

AbstractWe consider the problem of modelling restricted interactions between continuously-observed time series as given by a known static graph (or network) structure. For this purpose, we define a parametric multivariate Graph Ornstein-Uhlenbeck (GrOU) process driven by a general Lévy process to study the momentum and network effects amongst nodes, effects that quantify the impact of a node on itself and that of its neighbours, respectively. We derive the maximum likelihood estimators (MLEs) and their usual properties (existence, uniqueness and efficiency) along with their asymptotic normality and consistency. Additionally, an Adaptive Lasso approach, or a penalised likelihood scheme, infers both the graph structure along with the GrOU parameters concurrently and is shown to satisfy similar properties. Finally, we show that the asymptotic theory extends to the case when stochastic volatility modulation of the driving Lévy process is considered.


Author(s):  
Savas Dayanik ◽  
Kazutoshi Yamazaki

AbstractThis paper revisits a unified framework of sequential change-point detection and hypothesis testing modeled using hidden Markov chains and develops its asymptotic theory. Given a sequence of observations whose distributions are dependent on a hidden Markov chain, the objective is to quickly detect critical events, modeled by the first time the Markov chain leaves a specific set of states, and to accurately identify the class of states that the Markov chain enters. We propose computationally tractable sequential detection and identification strategies and obtain sufficient conditions for the asymptotic optimality in two Bayesian formulations. Numerical examples are provided to confirm the asymptotic optimality.


Sign in / Sign up

Export Citation Format

Share Document