A reinforcement learning framework for online data migration in hierarchical storage systems

2007 ◽  
Vol 43 (1) ◽  
pp. 1-19 ◽  
Author(s):  
David Vengerov
Author(s):  
Phillip K.C. Tse

Multimedia objects are stored on hierarchical storage systems (HSS). The objects are large in size but the access latency of HSS is high. It is necessary to provide high throughput in delivering data from the storage system. In addition to the statistical placement and striping methods in the two previous chapters, constraint allocation can also improve the throughput of HSS. Multimedia streams should be displayed with continuity. Depending on the data migration method, the whole object or only partial object is retrieved prior to the beginning of consumption. Thus, it may need to retrieve the parts of the object within guarantee times. The maximum access time depends on the storage locations of the object. If the parts of the object are freely stored on any media units, it may take the longest exchange time to exchange a media unit. If the parts of the object are freely stored on any locations of the media units, it may take the longest reposition time to reposition the media unit. The maximum access time needs to include both the longest exchange time and the longest reposition time. As a result, the guarantee times should not be shorter than the maximum access time in the worst case. The long guarantee time results in a small number of acceptable streams to the hierarchical storage system. The constraint allocation methods limit the freedom to place data on media units so that the worst case would never happen. They reduce the longest exchange time and/or the longest reposition time in accessing the objects. Two approaches to provide constraint allocations have been proposed on different types of media units. The interleaved contiguous placement limits the storage locations of data stripes on optical disks and it is described in the next section. The concurrent striping method that limits the storage locations of data stripes on tapes is described.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Karim El-Laithy ◽  
Martin Bogdan

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.


2021 ◽  
pp. 1-1
Author(s):  
Syed Khurram Mahmud ◽  
Yuanwei Liu ◽  
Yue Chen ◽  
Kok Keong Chai

2021 ◽  
Vol 12 (6) ◽  
pp. 1-23
Author(s):  
Shuo Tao ◽  
Jingang Jiang ◽  
Defu Lian ◽  
Kai Zheng ◽  
Enhong Chen

Mobility prediction plays an important role in a wide range of location-based applications and services. However, there are three problems in the existing literature: (1) explicit high-order interactions of spatio-temporal features are not systemically modeled; (2) most existing algorithms place attention mechanisms on top of recurrent network, so they can not allow for full parallelism and are inferior to self-attention for capturing long-range dependence; (3) most literature does not make good use of long-term historical information and do not effectively model the long-term periodicity of users. To this end, we propose MoveNet and RLMoveNet. MoveNet is a self-attention-based sequential model, predicting each user’s next destination based on her most recent visits and historical trajectory. MoveNet first introduces a cross-based learning framework for modeling feature interactions. With self-attention on both the most recent visits and historical trajectory, MoveNet can use an attention mechanism to capture the user’s long-term regularity in a more efficient way. Based on MoveNet, to model long-term periodicity more effectively, we add the reinforcement learning layer and named RLMoveNet. RLMoveNet regards the human mobility prediction as a reinforcement learning problem, using the reinforcement learning layer as the regularization part to drive the model to pay attention to the behavior with periodic actions, which can help us make the algorithm more effective. We evaluate both of them with three real-world mobility datasets. MoveNet outperforms the state-of-the-art mobility predictor by around 10% in terms of accuracy, and simultaneously achieves faster convergence and over 4x training speedup. Moreover, RLMoveNet achieves higher prediction accuracy than MoveNet, which proves that modeling periodicity explicitly from the perspective of reinforcement learning is more effective.


Sign in / Sign up

Export Citation Format

Share Document