Accelerating frequent itemset mining on graphics processing units

2013 ◽  
Vol 66 (1) ◽  
pp. 94-117 ◽  
Author(s):  
Fan Zhang ◽  
Yan Zhang ◽  
Jason D. Bakos

Parallel processing has turn to be a common programming practice because of its efficiency and thus becomes an interesting field for researchers. With the introduction of multi- core processors as well as general purpose graphics processing units, parallel programming has become affordable. This leads to the parallelization of many of the complex data processing algorithms including algorithms in data mining. In this paper, a study on parallel PrePost+ is presented. PrePost+ is an efficient frequent itemset mining algorithm. The algorithm has been modified as a parallel algorithm and the obtained result is compared with the result of sequential PrePost+ algorithm


2022 ◽  
Vol 54 (9) ◽  
pp. 1-35
Author(s):  
Lázaro Bustio-Martínez ◽  
René Cumplido ◽  
Martín Letras ◽  
Raudel Hernández-León ◽  
Claudia Feregrino-Uribe ◽  
...  

In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-30
Author(s):  
Guangtao Wang ◽  
Gao Cong ◽  
Ying Zhang ◽  
Zhen Hai ◽  
Jieping Ye

The streams where multiple transactions are associated with the same key are prevalent in practice, e.g., a customer has multiple shopping records arriving at different time. Itemset frequency estimation on such streams is very challenging since sampling based methods, such as the popularly used reservoir sampling, cannot be used. In this article, we propose a novel k -Minimum Value (KMV) synopsis based method to estimate the frequency of itemsets over multi-transaction streams. First, we extract the KMV synopses for each item from the stream. Then, we propose a novel estimator to estimate the frequency of an itemset over the KMV synopses. Comparing to the existing estimator, our method is not only more accurate and efficient to calculate but also follows the downward-closure property. These properties enable the incorporation of our new estimator with existing frequent itemset mining (FIM) algorithm (e.g., FP-Growth) to mine frequent itemsets over multi-transaction streams. To demonstrate this, we implement a KMV synopsis based FIM algorithm by integrating our estimator into existing FIM algorithms, and we prove it is capable of guaranteeing the accuracy of FIM with a bounded size of KMV synopsis. Experimental results on massive streams show our estimator can significantly improve on the accuracy for both estimating itemset frequency and FIM compared to the existing estimators.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 450
Author(s):  
Gergely Honti ◽  
János Abonyi

Triplestores or resource description framework (RDF) stores are purpose-built databases used to organise, store and share data with context. Knowledge extraction from a large amount of interconnected data requires effective tools and methods to address the complexity and the underlying structure of semantic information. We propose a method that generates an interpretable multilayered network from an RDF database. The method utilises frequent itemset mining (FIM) of the subjects, predicates and the objects of the RDF data, and automatically extracts informative subsets of the database for the analysis. The results are used to form layers in an analysable multidimensional network. The methodology enables a consistent, transparent, multi-aspect-oriented knowledge extraction from the linked dataset. To demonstrate the usability and effectiveness of the methodology, we analyse how the science of sustainability and climate change are structured using the Microsoft Academic Knowledge Graph. In the case study, the FIM forms networks of disciplines to reveal the significant interdisciplinary science communities in sustainability and climate change. The constructed multilayer network then enables an analysis of the significant disciplines and interdisciplinary scientific areas. To demonstrate the proposed knowledge extraction process, we search for interdisciplinary science communities and then measure and rank their multidisciplinary effects. The analysis identifies discipline similarities, pinpointing the similarity between atmospheric science and meteorology as well as between geomorphology and oceanography. The results confirm that frequent itemset mining provides an informative sampled subsets of RDF databases which can be simultaneously analysed as layers of a multilayer network.


Sign in / Sign up

Export Citation Format

Share Document