Mille Cheval: a GPU-based in-memory high-performance computing framework for accelerated processing of big-data streams

Author(s):  
Vivek Kumar ◽  
Dilip Kumar Sharma ◽  
Vinay Kumar Mishra
2018 ◽  
Vol 88 ◽  
pp. 693-695 ◽  
Author(s):  
Yulei Wu ◽  
Yang Xiang ◽  
Jingguo Ge ◽  
Peter Muller

2021 ◽  
Author(s):  
Mohsen Hadianpour ◽  
Ehsan Rezayat ◽  
Mohammad-Reza Dehaqani

Abstract Due to the significantly drastic progress and improvement in neurophysiological recording technologies, neuroscientists have faced various complexities dealing with unstructured large-scale neural data. In the neuroscience community, these complexities could create serious bottlenecks in storing, sharing, and processing neural datasets. In this article, we developed a distributed high-performance computing (HPC) framework called `Big neuronal data framework' (BNDF), to overcome these complexities. BNDF is based on open-source big data frameworks, Hadoop and Spark providing a flexible and scalable structure. We examined BNDF on three different large-scale electrophysiological recording datasets from nonhuman primate’s brains. Our results exhibited faster runtimes with scalability due to the distributed nature of BNDF. We compared BNDF results to a widely used platform like MATLAB in an equitable computational resource. Compared with other similar methods, using BNDF provides more than five times faster performance in spike sorting as a usual neuroscience application.


2017 ◽  
pp. 777-806 ◽  
Author(s):  
H. Anzt ◽  
J. Dongarra ◽  
M. Gates ◽  
J. Kurzak ◽  
P. Luszczek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document