Weakly periodic Gibbs measures of the Ising model with an external field on the Cayley tree

2015 ◽  
Vol 183 (3) ◽  
pp. 822-828
Author(s):  
M. M. Rahmatullaev
2018 ◽  
Vol 2018 (3) ◽  
pp. 147-155
Author(s):  
M.M. Rakhmatullaev ◽  
M.A. Rasulova

Author(s):  
U. A. ROZIKOV ◽  
Y. M. SUHOV

We consider a nearest-neighbor solid-on-solid (SOS) model, with several spin values 0, 1,…, m, m ≥ 2, and zero external field, on a Cayley tree of order k (with k + 1 neighbors). The SOS model can be treated as a natural generalization of the Ising model (obtained for m = 1). We mainly assume that m = 2 (three spin values) and study translation-invariant (TI) and "splitting" (S) Gibbs measures (GMs). (Splitting GMs have a particular Markov-type property specific for a tree.) Furthermore, we focus on symmetric TISGMs, with respect to a "mirror" reflection of the spins. [For the Ising model (where m = 1), such measures are reduced to the "disordered" phase obtained for free boundary conditions, see Refs. 9, 10.] For m = 2, in the antiferromagnetic (AFM) case, a symmetric TISGM (and even a general TISGM) is unique for all temperatures. In the ferromagnetic (FM) case, for m = 2, the number of symmetric TISGMs and (and the number of general TISGMs) varies with the temperature: this gives an interesting example of phase transition. Here we identify a critical inverse temperature, [Formula: see text] such that [Formula: see text], there exists a unique symmetric TISGM μ* and [Formula: see text] there are exactly three symmetric TISGMs: [Formula: see text] (a "bottom" symmetric TISGM), [Formula: see text] (a "middle" symmetric TISGM) and [Formula: see text] (a "top" symmetric TISGM). For [Formula: see text] we also construct a continuum of distinct, symmertric SGMs which are non-TI. Our second result gives complete description of the set of periodic Gibbs measures for the SOS model on a Cayley tree. A complete description of periodic GMs means a characterisation of such measures with respect to any given normal subgroup of finite index in the representation group of the tree. We show that (i) for an FM SOS model, for any normal subgroup of finite index, each periodic SGM is in fact TI. Further, (ii) for an AFM SOS model, for any normal subgroup of finite index, each periodic SGM is either TI or has period two (i.e. is a chess-board SGM).


2020 ◽  
Vol 86 (3) ◽  
pp. 293-302
Author(s):  
Farhod Halimjonovich Haydarov ◽  
Shamshod A. Akhtamaliyev ◽  
Madalixon A. Nazirov ◽  
Behzod Boyxonovich Qarshiyev

2021 ◽  
Vol 73 (7) ◽  
pp. 938-950
Author(s):  
M. Rahmatullaev ◽  
F. К. Rafikov ◽  
Sh. Kh. Azamov

УДК 517.9 Розглядається модель Поттса на деревi Келi. Доведено iснування мiр Гiббса, побудованих аналогiчним методом iз [H. Akin, U. A. Rozikov, S. Temir, <em>A new set of limiting Gibbs measures for the Ising model on a Cayley tree</em>, J. Stat. Phys., <strong>142</strong>, № 2, 314 – 321 (2011)] i -трансляцiйно-iнварiантних мiр Гiббса для моделi Поттса на деревi Келi. Обчислено вiльнi енергiї цих мiр Гiббса.


2010 ◽  
Vol 142 (2) ◽  
pp. 314-321 ◽  
Author(s):  
H. Akin ◽  
U. A. Rozikov ◽  
S. Temir

2021 ◽  
Vol 206 (2) ◽  
pp. 185-198
Author(s):  
M. M. Rakhmatullaev ◽  
J. D. Dehqonov

2015 ◽  
Vol 59 (11) ◽  
pp. 45-53 ◽  
Author(s):  
M. M. Rakhmatullaev

Sign in / Sign up

Export Citation Format

Share Document