continuous spin
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 2)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2168
Author(s):  
Laurens Leys ◽  
Gust Nuytten ◽  
Joris Lammens ◽  
Pieter-Jan Van Bockstal ◽  
Jos Corver ◽  
...  

The pharmaceutical industry is progressing toward the development of more continuous manufacturing techniques. At the same time, the industry is striving toward more process understanding and improved process control, which requires the implementation of process analytical technology tools (PAT). For the purpose of drying biopharmaceuticals, a continuous spin freeze-drying technology for unit doses was developed, which is based on creating thin layers of product by spinning the solution during the freezing step. Drying is performed under vacuum using infrared heaters to provide energy for the sublimation process. This approach reduces drying times by more than 90% compared to conventional batch freeze-drying. In this work, a new methodology is presented using near-infrared (NIR) spectroscopy to study the desorption kinetics during the secondary drying step of the continuous spin freeze-drying process. An inline PLS-based NIR calibration model to predict the residual moisture content of a standard formulation (i.e., 10% sucrose) was constructed and validated. This model was then used to evaluate the effect of different process parameters on the desorption rate. Product temperature, which was controlled by a PID feedback mechanism of the IR heaters, had the highest positive impact on the drying rate during secondary drying. Using a higher cooling rate during spin freezing was found to significantly increase the desorption rate as well. A higher filling volume had a smaller negative effect on the drying rate while the chamber pressure during drying was found to have no significant effect in the range between 10 and 30 Pa.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1749
Author(s):  
Ismael Ahlouche Lahlali ◽  
Nicolas Boulanger ◽  
Andrea Campoleoni

Considering the Poincaré group ISO(d−1,1) in any dimension d>3, we characterise the coadjoint orbits that are associated with massive and massless particles of discrete spin. We also comment on how our analysis extends to the case of continuous spin.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuesheng Li ◽  
Qiao-Yi Li ◽  
Wei Li ◽  
Tao Liu ◽  
David J. Voneshen ◽  
...  

AbstractIn crystalline magnets, interaction randomness is usually thought as a negative factor preventing interesting quantum phenomena to occur. However, intriguing interplay between randomness and quantumness can also leads to unique phenomena in the strongly correlated materials. Among others, the random transverse-field Ising spin chain (RTIC) hosts a renowned quantum Griffiths phase. Although the RTIC model has been regarded as a toy model for long, here we materialize this model with the compound PrTiNbO6, which has a disordered ground state with pronounced quantum fluctuations and continuous spin excitations. The observed anomalous spin dynamics of PrTiNbO6 can be accounted by the RTIC model with a consistent set of parameters determined from fitting the thermodynamic data, and it is ascribed to the quantum Griffiths rare regions in the system. Our results provide a concrete example of quantum Griffiths magnet, and offer an ideal experimental platform for investigating the dynamical properties of random many-body system.


2020 ◽  
Vol 86 (3) ◽  
pp. 293-302
Author(s):  
Farhod Halimjonovich Haydarov ◽  
Shamshod A. Akhtamaliyev ◽  
Madalixon A. Nazirov ◽  
Behzod Boyxonovich Qarshiyev

2020 ◽  
Vol 157 ◽  
pp. 97-107 ◽  
Author(s):  
L. Leys ◽  
B. Vanbillemont ◽  
P.J. Van Bockstal ◽  
J. Lammens ◽  
G. Nuytten ◽  
...  

2020 ◽  
Vol 35 (26) ◽  
pp. 2050154
Author(s):  
Č. Burdík ◽  
V. K. Pandey ◽  
A. Reshetnyak

Gauge-invariant descriptions for a free bosonic scalar field of continuous spin in a [Formula: see text]-dimensional Minkowski space–time using a metric-like formulation are constructed on the basis of a constrained BRST–BFV approach we propose. The resulting BRST–BFV equations of motion for a scalar field augmented by ghost operators contain different sets of auxiliary fields, depending on the manner of a partial gauge-fixing and a resolution of some of the equations of motion for a BRST-unfolded first-stage reducible gauge theory. To achieve an equivalence of the resulting BRST-unfolded constrained equations of motion with the initial irreducible Poincaré group conditions of a Bargmann–Wigner type, it is demonstrated that one should replace the field in these conditions by a class of gauge-equivalent configurations. Triplet-like, doublet-like constrained descriptions, as well as an unconstrained quartet-like non-Lagrangian and Lagrangian formulations, are derived using both Fronsdal-like and new tensor fields. In particular, the BRST–BV equations of motion and Lagrangian using an appropriate set of Lagrangian multipliers in the minimal sector of the respective field and antifield configurations are constructed in a manifest way.


2020 ◽  
Vol 23 (3) ◽  
pp. 764-786
Author(s):  
Raoul R. Nigmatullin ◽  
Paolo Lino ◽  
Guido Maione

AbstractIn this paper, based on the “fuzzy” calculus covering the continuous range of operations between two couples of arithmetic operations (+, –) and (×, :), a new form of the fractional integral is proposed occupying an intermediate position between the integral and derivative of the first order. This new form of the fractional integral satisfies the C1 criterion according to the Ross classification. The new calculus is tightly related to the continuous values of the continuous spin S = 1 and can generalize the expression for the fractional values of the shifting discrete index. This calculus can be interpreted as the appearance of the hidden states corresponding to unobservable values of S = 1. Many well-known formulas can be generalized and receive a new extended interpretation. In particular, one can factorize any rectangle matrix and receive the “perfect” filtering formula that allows transforming any (deterministic or random) function to another arbitrary function and vice versa. This transformation can find unexpected applications in data transmission, cryptography and calibration of different gadgets and devices. One can also receive the hybrid (”centaur”) formula for the Fourier (F-) transformation unifying both expressions for the direct and inverse F-transformations in one mathematical unit. The generalized Dirichlet formula, which is obtained in the frame of the new calculus to allow selecting the desired resonance frequencies, will be useful in discrete signals processing, too. The basic formulas are tested numerically on mimic data.


Nanophotonics ◽  
2020 ◽  
Vol 9 (13) ◽  
pp. 4127-4138 ◽  
Author(s):  
Kirill P. Kalinin ◽  
Alberto Amo ◽  
Jacqueline Bloch ◽  
Natalia G. Berloff

AbstractGain-dissipative systems of various physical origin have recently shown the ability to act as analogue minimisers of hard combinatorial optimisation problems. Whether or not these proposals will lead to any advantage in performance over the classical computations depends on the ability to establish controllable couplings for sufficiently dense short- and long-range interactions between the spins. Here, we propose a polaritonic XY-Ising machine based on a network of geometrically isolated polariton condensates capable of minimising discrete and continuous spin Hamiltonians. We elucidate the performance of the proposed computing platform for two types of couplings: relative and absolute. The interactions between the network nodes might be controlled by redirecting the emission between the condensates or by sending the phase information between nodes using resonant excitation. We discuss the conditions under which the proposed machine leads to a pure polariton simulator with pre-programmed couplings or results in a hybrid classical polariton simulator. We argue that the proposed architecture for the remote coupling control offers an improvement over geometrically coupled condensates in both accuracy and stability as well as increases versatility, range, and connectivity of spin Hamiltonians that can be simulated with polariton networks.


Sign in / Sign up

Export Citation Format

Share Document