Variation in autosomal and sex-linked genetic effects for growth traits in Markhoz goat using multivariate animal models

2020 ◽  
Vol 52 (6) ◽  
pp. 2917-2923
Author(s):  
Meysam Latifi ◽  
Yousef Naderi ◽  
Amin Mortazavi ◽  
Mehdi Bohlouli ◽  
Saadat Sadeghi
1998 ◽  
Vol 66 (2) ◽  
pp. 349-355 ◽  
Author(s):  
M. Diop ◽  
L. D. Van Vleck

AbstractEstimates of (co)variance components and genetic parameters were obtained for birth (no. = 3909), weaning (no. = 3425), yearling (no. = 2763), and final weight (no. = 2142) for Gobra cattle at the Centre de Recherches Zootechniques de Dahra (Senegal), using single trait animal models. Data were analysed by restricted maximum likelihood. Four different animal models were fitted for each trait. Model 1 considered the animal as the only random effect. Model 2 included in addition to the additive direct effect of the animal, the environmental effect due to the dam. Model 3 added the maternal additive genetic effects and allowed a covariance between the direct and maternal genetic effects. Model 4 fitted both maternal genetic and permanent environmental effects. Inclusion of both types of maternal effects (genetic and environmental) provided a better fit for birth and weaning weights than models with one maternal effect only. For yearling and final weights, the improvement was not significant. Important maternal effects werefound for all traits. Estimates of direct heritabilities were substantially higher when maternal effects were ignored. Estimates of direct and maternal heritabilities with model 4 were 0·07 (s.e. 0·03) and 0·04 (s.e. 0·02), 0·20 (s.e. 0·05) and 0·21 (s.e. 0.05), 0·24 (s.e. 0·07) and 0·21 (s.e. 0·06), and 0·14 (s.e. 0·06) and 0.16 (s.e. 0·06) for birth, weaning, yearling and final weights, respectively. Correlations between direct and maternal genetic effects were negative for all traits, and large for weaning and yearling weights with estimates of -0·61 (s.e. 0·33) and -0·50 (s.e. 0·31), respectively. There was a significant positive linear phenotypic trend for weaning and yearling weights. Linear trends for additive direct and maternal breeding values were not significant for any trait except maternal breeding value for yearling weight.


1999 ◽  
Vol 22 (3) ◽  
pp. 363-367 ◽  
Author(s):  
M. Diop ◽  
J. Dodenhoff ◽  
L.D. Van Vleck

Estimates of genetic parameters for birth (N = 3909), weaning (N = 3425), yearling (N = 2764) and final (N = 2144) weights were obtained from the records of Gobra cattle collected at the Centre de Recherches Zootechniques de Dahra, Senegal. Three animal models were fitted to obtain estimates by REML using an average information (AI) approach. Model 1 considered random direct, maternal genetic and maternal permanent environmental effects. In model 2, a general grandmaternal effect was added to the random effects considered in model 1, and in model 3, the general grandmaternal effect was divided into grandmaternal genetic and grandmaternal permanent environmental effects. All models allowed covariances among genetic effects. The inclusion of grandmaternal effects in models 2 and 3 did not change the estimates of the genetic parameters compared to model 1. Variances attributable to grandmaternal effects became negative and were set close to zero, except for yearling weight for which grandmaternal heritability was 0.03 ± 0.03. The estimates for direct and maternal heritabilities were, respectively, 0.08 ± 0.03 and 0.03 ± 0.02 for birth, 0.20 ± 0.05 and 0.21 ± 0.05 for weaning, 0.26 ± 0.07 and 0.16 ± 0.07 for yearling and 0.14 ± 0.06 and 0.16 ± 0.06 for final weights. The estimates of the genetic correlation between direct and maternal effects for birth, weaning, yearling and final weights were -0.17 ± 0.40, -0.58 ± 0.32, -0.52 ± 0.34 and -0.34 ± 0.37, respectively. For yearling weight with grandmaternal heritability estimated to be only 0.03, model 3 gave estimates of the genetic correlation between direct and grandmaternal effects and between maternal and grandmaternal effects of 0.28 ± 0.48 and -0.33 ± 0.67, respectively. Estimates of direct and maternal heritabilities were unchanged when grandmaternal effects were not included in the model.


2008 ◽  
Vol 52 (No. 8) ◽  
pp. 254-260 ◽  
Author(s):  
A. Wolc ◽  
M. Lisowski ◽  
T. Szwaczkowski

Six generations of three layer lines (13 770 recorded individuals of A22 line, 13 950 of A88, 9 351 of K66) were used to estimate genetic effects on egg production under cumulative, multitrait and repeatability models. Variance components were estimated by the AI-REML algorithm. The heritability of cumulative records ranged from 0.08 to 0.1. For the repeated measurements model the following genetic parameters were obtained: heritability 0.02–0.03, repeatability 0.04–0.38. The first two months of egg production were found to differ from the other periods: heritability was relatively high (<i>h</i><sup>2</sup> > 0.35) and low or negative correlations with the other periods were found. Heritability was low (<i>h</i><sup>2</sup> < 0.1) from the peak production until the end of recording and the consecutive periods were highly correlated. Further studies on monthly records are suggested.


Gene ◽  
2021 ◽  
Vol 769 ◽  
pp. 145201
Author(s):  
Shijie Lyu ◽  
Peng Yang ◽  
Yanyong Liu ◽  
Tian Song ◽  
Zijing Zhang ◽  
...  

Author(s):  
DANQING LI ◽  
YONGPING LIU ◽  
HANGSHENG ZHENG ◽  
RENGANG ZHU ◽  
YONGXIANG HUANG

2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Bradie M Schmidt ◽  
Michael G Gonda ◽  
Michael D MacNeil

Abstract Ultrasound technology provides cattle breeders with a quick, noninvasive, and inexpensive way to measure carcass data on live animals. Ultrasound data are used as indicator traits in cattle genetic evaluations for economically relevant carcass traits. Ultrasound cattle genetic evaluations assume homogeneous additive genetic and residual variance. Thus, the objective was to partition phenotypic variance in ultrasound carcass measurements into components for additive genetic effects, technicians, contemporary groups within technicians, and residual and to examine the homogeneity of these variances among image interpretation laboratories. Records of longissimus muscle area (LMA), percentage of intramuscular fat (IMF), and subcutaneous fat depth (SFD), measured using ultrasound, were provided by the American Angus Association (n = 65,967), American Hereford Association (n = 43,182), and American Simmental Association (n = 48,298). The data also included contemporary group, technician, imaging lab, and a three-generation pedigree for each animal. Variance components for ultrasound carcass measurements were first estimated with univariate animal models for each breed and imaging laboratory using derivative-free restricted maximum likelihood. Then, treating data from each imaging laboratory as separate traits, genetic correlations between laboratories for LMA, percentage of IMF, and subcutaneous fat were estimated with trivariate animal models. The technician explained 12–27%, 5–23%, and 4–26% of the variance for IMF, SFD, and LMA, respectively, across all three breeds. Variance due to technician was often greater than variance due to additive genetic effects but almost always less than that explained by the contemporary group. Within breeds, estimates of additive genetic variance for LMA, SFD, and IMF differed (range divided by mean) among laboratories by 4.5%, 21.5%, and 39.4 % (Angus); 31.6%, 15.0%, and 49.1% (Hereford); and 19.9%, 46.6%, and 55.3% (Simmental), respectively. Likewise, estimates of residual variance for LMA, SFD, and IMF differed among laboratories by 43.4%, 22.9%, and 43.3% (Angus); 24.9%, 15.2%, and 79.2% (Hereford); and 26.4%, 32.5%, and 46.2% (Simmental), respectively. Genetic correlations between labs across breeds ranged from 0.79 to 0.95 for IMF, 0.26 to 0.94 for SFD, and 0.78 to 0.98 for LMA. The impact of the observed heterogeneity of variance between labs on genetic evaluation requires further study.


Sign in / Sign up

Export Citation Format

Share Document