genetic parameters
Recently Published Documents


TOTAL DOCUMENTS

3706
(FIVE YEARS 766)

H-INDEX

68
(FIVE YEARS 7)

Author(s):  
Manuel Du ◽  
Richard Bernstein ◽  
Andreas Hoppe ◽  
Kaspar Bienefeld

Abstract Estimating genetic parameters of quantitative traits is a prerequisite for animal breeding. In honeybees, the genetic variance separates into queen and worker effects. However, under data paucity, parameter estimations that account for this peculiarity often yield implausible results. Consequently, simplified models which attribute all genetic contributions to either the queen (queen model) or the workers (worker model) are often used to estimate variance components in honeybees. However, the causes for estimations with the complete model (colony model) to fail and the consequences of simplified models for variance estimates are little understood. We newly developed the necessary theory to compare parameter estimates that were achieved by the colony model with those of the queen and worker models. Furthermore, we performed computer simulations to quantify the influence of model choice, estimation algorithm, true genetic parameters, rates of controlled mating, apiary sizes, and phenotype data completeness on the success of genetic parameter estimations. We found that successful estimations with the colony model were only possible if at least some of the queens mated controlledly on mating stations. In that case, estimates were largely unbiased if more than 20% of the colonies had phenotype records. The simplified queen and worker models proved more stable and yielded plausible parameter estimates for almost all settings. Results obtained from these models were unbiased when mating was uncontrolled, but with controlled mating, the simplified models consistently overestimated heritabilities. This work elucidates the requirements for variance component estimation in honeybees and provides the theoretical groundwork for simplified honeybee models.


2022 ◽  
Vol 54 (1) ◽  
Author(s):  
B. S. Marestone ◽  
R. A. A. Torres Junior ◽  
L. O. C. Silva ◽  
G. R. O. Menezes ◽  
C. A. S. D. Muniz ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Dachang Dou ◽  
Linyong Shen ◽  
Jiamei Zhou ◽  
Zhiping Cao ◽  
Peng Luan ◽  
...  

Abstract Background The identification of markers and genes for growth traits may not only benefit for marker assist selection /genomic selection but also provide important information for understanding the genetic foundation of growth traits in broilers. Results In the current study, we estimated the genetic parameters of eight growth traits in broilers and carried out the genome-wide association studies for these growth traits. A total of 113 QTNs discovered by multiple methods together, and some genes, including ACTA1, IGF2BP1, TAPT1, LDB2, PRKCA, TGFBR2, GLI3, SLC16A7, INHBA, BAMBI, APCDD1, GPR39, and GATA4, were identified as important candidate genes for rapid growth in broilers. Conclusions The results of this study will provide important information for understanding the genetic foundation of growth traits in broilers.


2022 ◽  
pp. 105904
Author(s):  
Edicleide Macedo da Silva ◽  
João Pedro Peixoto Fernandes ◽  
Daniel Dalvan do Nascimento ◽  
Lucas Matias Gomes-Messias ◽  
Aline Oliveira ◽  
...  

2022 ◽  
Vol 206 ◽  
pp. 106588
Author(s):  
Edwin Oyieng ◽  
Raphael Mrode ◽  
Julie M.K. Ojango ◽  
Chinyere C. Ekine-Dzivenu ◽  
James Audho ◽  
...  

2022 ◽  
Vol 52 (5) ◽  
Author(s):  
Joel Domínguez-Viveros ◽  
Antonio Reyes-Cerón ◽  
Juan Fernando Saiz-Pineda ◽  
Cesar Villegas-Gutiérrez ◽  
Guadalupe Nelson Aguilar-Palma ◽  
...  

ABSTRACT: This study analyzed the Sardo Negro breed pedigree (41,521 animals registered from 1958 to 2019) to determine its structure, evolution, and genetic variability (GV). The population genetic parameters evaluated were effective number of founders (fe) and ancestors (fa), pedigree integrity, additive genetic relationship (AGR); number of complete generations (NCG), maximum generations traced (NMGT), and equivalent complete generations (NECG); effective population size (Ne), inbreeding coefficient (F), and generation interval (GI). The average GI was 7.45 years. A total of 7,804 founders and 4,856 ancestors were identified for a fe of 185 and a fa of 97. The average and maximum values of NCG, NECG, and NMGT were 1.6 and 5.0, 2.5 and 6.5, 4.3 and 12, with Ne estimates of 15.9, 25.9, and 69.0, respectively. The increase in F, linked to Ne, ranged from 0.72% to 3.1% per generation. The average values for F and AGR were 3.6% and 1.0%, respectively. The proportion of inbred individuals was 32.0%, with F values ranging from 0.01 to 62.2% and an average of 11.3%. The rate of inbred population was 1.3% per year. The annual rate of AGR was 0.04%. For the continuity and projection of the breed, the evolution of F as a function of Ne and the possible implications of the selection schemes must be considered. The genetic variability sustained over time results from the Ne.


2022 ◽  
Vol 52 (5) ◽  
Author(s):  
Fernanda Vargas Valadares ◽  
Rafael Nunes de Almeida ◽  
Lázaro Renilton Emerick Silva ◽  
Geferson Rocha Santos ◽  
Raissa Olmo Lacerda Pirovani ◽  
...  

ABSTRACT: In view of the need to increase genetic variability to obtain materials with a significant capacity to drought tolerance, this study conducted a cycle of a reciprocal recurrent selection of full-sib families of maize. To this end, 64 full-sib families of maize were evaluated in two environments according to their morpho-agronomic data in a randomized block design with two replicates. It were analyzed of Male flowering (MF); Female flowering (FF); Flowering interval (IF); days for flowering (DF); Plant height (PH); Ear height (EH); number of plants at the Stand (NPS); Number of broken plant (NBrP); Number of bedded plants (NBeP); Strawing (St); Ear length (EL); Ear diameter (ED); Ear number (EN); Prolificacy (Pr); Number of diseased ears (NDE); Number of ears attacked by pests (NEP); Ear weight (EW); Yield (YIE) and Total Chlorophyll Index (TCI). The analysis of variance was performed by the F test at 5% significance level, and also the evaluation of genetic parameters. Regarding morpho-agronomic data, the analysis of variance and the analysis of genetic parameters showed that there was no interaction genotype x environment with regard to the genetic variability among the families under study. Lastly, the final selection of the superior genotypes was made on the basis of the ranking of the 40 most productive families, from which, combined with the molecular data, the 30 most productive, most drought-tolerant, and most genetically diverse ones were selected to compose the next cycle of recurrent maize selection aiming water-stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document