Reconstruction of the Sturm–Liouville Operator with Nonseparated Boundary Conditions and a Spectral Parameter in the Boundary Condition

2018 ◽  
Vol 69 (9) ◽  
pp. 1416-1423 ◽  
Author(s):  
Ch. G. Ibadzadeh ◽  
I. M. Nabiev
2017 ◽  
Author(s):  
Namig J. Guliyev

Inverse problems of recovering the coefficients of Sturm--Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: (1) from the sequences of eigenvalues and norming constants; (2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.


2012 ◽  
Vol 43 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Yu-Ping Wang

In this paper, we discuss the inverse problem for Sturm- Liouville operators with boundary conditions having fractional linear function of spectral parameter on the finite interval $[0, 1].$ Using Weyl m-function techniques, we establish a uniqueness theorem. i.e., If q(x) is prescribed on $[0,\frac{1}{2}+\alpha]$ for some $\alpha\in [0,1),$ then the potential $q(x)$ on the interval $[0, 1]$ and fractional linear function $\frac{a_2\lambda+b_2}{c_2\lambda+d_2}$  of the boundary condition are uniquely determined by a subset $S\subset \sigma (L)$ and fractional linear function $\frac{a_1\lambda+b_1}{c_1\lambda+d_1}$ of the boundary condition.


Sign in / Sign up

Export Citation Format

Share Document