spectral problem
Recently Published Documents


TOTAL DOCUMENTS

735
(FIVE YEARS 123)

H-INDEX

28
(FIVE YEARS 4)

Nonlinearity ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 1036-1060
Author(s):  
Ross Parker ◽  
P G Kevrekidis ◽  
Alejandro Aceves

Abstract We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein–Gordon models. The multi-kinks are constructed using Lin’s method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an m-structure multi-kink, there will be m eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
João Caetano ◽  
Wolfger Peelaers ◽  
Leonardo Rastelli

Abstract We revisit the leading irrelevant deformation of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory that preserves sixteen supercharges. We consider the deformed theory on S3× ℝ. We are able to write a closed form expression of the classical action thanks to a formalism that realizes eight supercharges off shell. We then investigate integrability of the spectral problem, by studying the spin-chain Hamiltonian in planar perturbation theory. While there are some structural indications that a suitably defined deformation might preserve integrability, we are unable to settle this question by our two-loop calculation; indeed up to this order we recover the integrable Hamiltonian of undeformed $$ \mathcal{N} $$ N = 4 SYM due to accidental symmetry enhancement. We also comment on the holographic interpretation of the theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ning Zhang ◽  
Xi-Xiang Xu

Starting from a novel discrete spectral problem, a family of integrable differential-difference equations is derived through discrete zero curvature equation. And then, tri-Hamiltonian structure of the whole family is established by the discrete trace identity. It is shown that the obtained family is Liouville-integrable. Next, a nonisospectral integrable family associated with the discrete spectral problem is constructed through nonisospectral discrete zero curvature representation. Finally, Lie algebra of isospectral and nonisospectral vector fields is deduced.


2021 ◽  
Vol 37 (4) ◽  
Author(s):  
V. V. Bulatov ◽  
Yu. V. Vladimirov ◽  
I. Yu. Vladimirov ◽  
◽  
◽  
...  

Purpose. The description of the internal gravity waves dynamics in the ocean with background fields of shear currents is a very difficult problem even in the linear approximation. The mathematical problem describing wave dynamics is reduced to the analysis of a system of partial differential equations; and while taking into account the vertical and horizontal inhomogeneity, this system of equations does not allow separation of the variables. Application of various approximations makes it possible to construct analytical solutions for the model distributions of buoyancy frequency and background shear ocean currents. The work is aimed at studying dynamics of internal gravity waves in the ocean with the arbitrary and model distributions of density and background shear currents. Methods and Results. The paper represents the numerical and analytical solutions describing the main phase characteristics of the internal gravity wave fields in the stratified ocean of finite depth, both for arbitrary and model distributions of the buoyancy frequency and the background shear currents. The currents are considered to be stationary and horizontally homogeneous on the assumption that the scale of the currents' horizontal and temporal variability is much larger than the characteristic lengths and periods of internal gravity waves. Having been used, the Fourier method permitted to obtain integral representations of the solutions under the Miles – Howard stability condition is fulfilled. To solve the vertical spectral problem, proposed is the algorithm for calculating the main dispersion dependences that determine the phase characteristics of the generated wave fields. The calculations for one real distribution of buoyancy frequency and shear flow profile are represented. Transformation of the dispersion surfaces and phase structures of the internal gravitational waves’ fields is studied depending on the generation parameters. To solve the problem analytically, constant distribution of the buoyancy frequency and linear dependences of the background shear current on depth were used. For the model distribution of the buoyancy and shear flow frequencies, the explicit analytical expressions describing the solutions of the vertical spectral problem were derived. The numerical and asymptotic solutions for the characteristic oceanic parameters were compared. Conclusions. The obtained results show that the asymptotic constructions using the model dependences of the buoyancy frequency and the background shear velocities’ distribution, describe the numerical solutions of the vertical spectral problem to a good degree of accuracy. The model representations, having been applied for hydrological parameters, make it possible to describe qualitatively correctly the main characteristics of internal gravity waves in the ocean with the arbitrary background shear currents.


Sign in / Sign up

Export Citation Format

Share Document