scholarly journals Privacy-preserving association rule mining based on electronic medical system

2022 ◽  
Author(s):  
Wenju Xu ◽  
Qingqing Zhao ◽  
Yu Zhan ◽  
Baocang Wang ◽  
Yupu Hu
2017 ◽  
Vol 12 (8) ◽  
pp. 1-7
Author(s):  
Kshitij Pathak ◽  
Sanjay Silakari ◽  
Narendra S. Chaudhari

Author(s):  
Sathiyapriya Krishnamoorthy ◽  
G. Sudha Sadasivam ◽  
M. Rajalakshmi ◽  
K. Kowsalyaa ◽  
M. Dhivya

An association rule is classified as sensitive if its thread of revelation is above certain confidence value. If these sensitive rules were revealed to the public, it is possible to deduce sensitive knowledge from the published data and offers benefit for the business competitors. Earlier studies in privacy preserving association rule mining focus on binary data and has more side effects. But in practical applications the transactions contain the purchased quantities of the items. Hence preserving privacy of quantitative data is essential. The main goal of the proposed system is to hide a group of interesting patterns which contains sensitive knowledge such that modifications have minimum side effects like lost rules, ghost rules, and number of modifications. The proposed system applies Particle Swarm Optimization to a few clusters of particles thus reducing the number of modification. Experimental results demonstrate that the proposed approach is efficient in terms of lost rules, number of modifications, hiding failure with complete avoidance of ghost rules.


Author(s):  
Nirali R. Nanavati ◽  
Neeraj Sen ◽  
Devesh C. Jinwala

With digital data being abundant in today's world, competing organizations desire to gain insights about the market, without putting the privacy of their confidential data at risk. This paper provides a new dimension to the problem of Privacy Preserving Distributed Association Rule Mining (PPDARM) by extending it to a distributed temporal setup. It proposes extensions of public key based and non-public key based additively homomorphic techniques, based on efficient private matching and Shamir's secret sharing, to privately decipher these global cycles in cyclic association rules. Along with the theoretical analysis, it presents experimental results to substantiate it. This paper observes that the Secret Sharing scheme is more efficient than the one based on Paillier homomorphic encryption. However, it observes a considerable increase in the overhead associated with the Shamir's secret sharing scheme, as a result of the increase in the number of parties. To reduce this overhead, it extends the secret sharing scheme without mediators to a novel model with a Fully Trusted and a Semi Trusted Third Party. The experimental results establish this functioning for global cycle detections in a temporal setup as a case study. The novel constructions proposed can also be applied to other scenarios that want to undertake Secure Multiparty Computation (SMC) for PPDARM.


Sign in / Sign up

Export Citation Format

Share Document