Locally Conformal Kähler and Hermitian Yang-Mills Metrics

2021 ◽  
Vol 42 (4) ◽  
pp. 511-518
Author(s):  
Jieming Yang
2017 ◽  
Vol 4 (1) ◽  
pp. 37-42
Author(s):  
Hiroshi Sawai

Abstract The purpose of this paper is to prove that there exists a lattice on a certain solvable Lie group and construct a six-dimensional locally conformal Kähler solvmanifold with non-parallel Lee form.


2012 ◽  
Vol 09 (07) ◽  
pp. 1250057 ◽  
Author(s):  
DOBRINKA GRIBACHEVA

A Riemannian manifold M with an integrable almost product structure P is called a Riemannian product manifold. Our investigations are on the manifolds (M, P, g) of the largest class of Riemannian product manifolds, which is closed with respect to the group of conformal transformations of the metric g. This class is an analogue of the class of locally conformal Kähler manifolds in almost Hermitian geometry. In the present paper we study a natural connection D on (M, P, g) (i.e. DP = Dg = 0). We find necessary and sufficient conditions, the curvature tensor of D to have properties similar to the Kähler tensor in Hermitian geometry. We pay attention to the case when D has a parallel torsion. We establish that the Weyl tensors for the connection D and the Levi-Civita connection coincide as well as the invariance of the curvature tensor of D with respect to the usual conformal transformation. We consider the case when D is a flat connection. We construct an example of the considered manifold by a Lie group where D is a flat connection with non-parallel torsion.


2010 ◽  
Vol 270 (1-2) ◽  
pp. 179-187 ◽  
Author(s):  
Maurizio Parton ◽  
Victor Vuletescu

1995 ◽  
Vol 18 (2) ◽  
pp. 331-340
Author(s):  
M. Hasan shahid ◽  
A. Sharfuddin

The study ofCR-submanifolds of a Kähler manifold was initiated by Bejancu [1]. Since then many papers have appeared onCR-submanifolds of a Kähler manifold. Also, it has been studied that generic submanifolds of Kähler manifolds [2] are generalisations of holomorphic submanifolds, totally real submanifolds andCR-submanifolds of Kähler manifolds. On the other hand, many examplesC2of generic surfaces in which are notCR-submanifolds have been given by Chen [3] and this leads to the present paper where we obtain some necessary conditions for a generic submanifolds in a locally conformal Kähler manifold with four canonical strucrures, denoted byP,F,tandf, to have parallelP,Fandt. We also prove that for a generic submanifold of a locally conformal Kähler manifold,Fis parallel ifftis parallel.


Sign in / Sign up

Export Citation Format

Share Document